Search tips
Search criteria

Results 1-25 (39)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
more »
1.  Prevention and Immunotherapy of Secondary Murine Alveolar Echinococcosis Employing Recombinant EmP29 Antigen 
PLoS Neglected Tropical Diseases  2015;9(6):e0003795.
Alveolar echinococcosis (AE) is caused by infection with the larval stage of the tapeworm Echinococcus multilocularis. An increasing understanding of immunological events that account for the metacestode survival in human and murine AE infection prompted us to undertake explorative experiments tackling the potential of novel preventive and/or immunotherapeutic measures. In this study, the immunoprotective and immunotherapeutic ability of recombinant EmP29 antigen (rEmP29) was assessed in mice that were intraperitoneally infected with E. multilocularis metacestodes. For vaccination, three intraperitoneal injections with 20μg rEmP29 emulsified in saponin adjuvants were applied over 6 weeks. 2 weeks after the last boost, mice were infected, and at 90 days post-infection, rEmP29-vaccinated mice exhibited a median parasite weight that was reduced by 75% and 59% when compared to NaCl- or saponin–treated control mice, respectively. For immunotherapeutical application, the rEmP29 (20μg) vaccine was administered to experimentally infected mice, starting at 1 month post-infection, three times with 2 weeks intervals. Mice undergoing rEmP29 immunotherapy exhibited a median parasite load that was reduced by 53% and 49% when compared to NaCl- and saponin–treated control mice, respectively. Upon analysis of spleen cells, both, vaccination and treatment with rEmP29, resulted in low ratios of Th2/Th1 (IL-4/IFN-γ) cytokine mRNA and low levels of mRNA coding for IL-10 and IL-2. These results suggest that reduction of the immunosuppressive environment takes place in vaccinated as well as immunotreated mice, and a shift towards a Th1 type of immune response may be responsible for the observed increased restriction of parasite growth. The present study provides the first evidence that active immunotherapy may present a sustainable route for the control of AE.
Author Summary
Current medical management of AE that relies on surgery and continuous benzimidazole administration is of limited effectiveness. Therefore, alternative preventive and therapeutic tools need to be explored. Here, we demonstrate that vaccination with recombinant antigen EmP29 (rEmP29), prior or after secondary infection of BALB/c mice, resulted in a significant reduction of the median parasite weight when compared to different control groups. We then characterized the transcription level of splenic IL-4 and IFN-γ cytokines as hallmarks for AE-anti-protective humoral immune reaction (Th2) and for AE-effective (restrictive) cellular response (Th1), respectively. Results revealed that vaccinated mice in pre- or post-infection situation exhibited the lowest IL-4/IFN-γ mRNA ratios. In addition, those groups showed also significantly low levels of IL-10-encoding mRNA coding (immunosuppressive cytokine), as well as IL-2. These findings suggest that reduction of parasite load in rEmP29-vaccinated mice (in pre- or post-infection status) might be triggered by a decline of the immunosuppressive environment and a change of the host immune reaction towards a Th1-re-oriented cell-mediated immune defense. A similar non-specific effect appears also to be yielded by the immunostimulating adjuvants. This study provides the first insight into the potential benefits of antigen-specific immunotherapy as new treatment option of AE.
PMCID: PMC4460070  PMID: 26053794
2.  Deletion of Fibrinogen-like Protein 2 (FGL-2), a Novel CD4+ CD25+ Treg Effector Molecule, Leads to Improved Control of Echinococcus multilocularis Infection in Mice 
PLoS Neglected Tropical Diseases  2015;9(5):e0003755.
The growth potential of the tumor-like Echinococcus multilocularis metacestode (causing alveolar echinococcosis, AE) is directly linked to the nature/function of the periparasitic host immune-mediated processes. We previously showed that Fibrinogen-like-protein 2 (FGL2), a novel CD4+CD25+ Treg effector molecule, was over-expressed in the liver of mice experimentally infected with E. multilocularis. However, little is known about its contribution to the control of this chronic helminth infection.
Key parameters for infection outcome in E. multilocularis-infected fgl2-/- (AE-fgl2-/-) and wild type (AE-WT) mice at 1 and 4 month(s) post-infection were (i) parasite load (i. e. wet weight of parasitic metacestode tissue), and (ii) parasite cell proliferation as assessed by determining E. multilocularis 14-3-3 gene expression levels. Serum FGL2 levels were measured by ELISA. Spleen cells cultured with ConA for 48h or with E. multilocularis Vesicle Fluid (VF) for 96h were analyzed ex-vivo and in-vitro. In addition, spleen cells from non-infected WT mice were cultured with rFGL2/anti-FGL2 or rIL-17A/anti-IL-17A for further functional studies. For Treg-immune-suppression-assays, purified CD4+CD25+ Treg suspensions were incubated with CD4+ effector T cells in the presence of ConA and irradiated spleen cells as APCs. Flow cytometry and qRT-PCR were used to assess Treg, Th17-, Th1-, Th2-type immune responses and maturation of dendritic cells. We showed that AE-fgl2-/- mice exhibited (as compared to AE-WT-animals) (a) a significantly lower parasite load with reduced proliferation activity, (b) an increased T cell proliferative response to ConA, (c) reduced Treg numbers and function, and (d) a persistent capacity of Th1 polarization and DC maturation.
FGL2 appears as one of the key players in immune regulatory processes favoring metacestode survival by promoting Treg cell activity and IL-17A production that contributes to FGL2-regulation. Prospectively, targeting FGL2 could be an option to develop an immunotherapy against AE and other chronic parasitic diseases.
Author Summary
In larval E. multilocularis infection causing alveolar echinococcosis (AE) in humans as well as mice, immune tolerance and/or down-regulation of protective immunity is a marked characteristic of this chronic disease. Our study provides a comprehensive evidence for a major involvement of the recently identified CD4+ CD25+ Regulatory T Cell Effector Molecule FGL2 to the outcome of AE. Our major findings are as follows: 1) FGL2 is mostly secreted by Tregs and partly contributes to their functions; 2) FGL2 can down-regulate the maturation of DCs, suppress Th1 and Th17 immune responses, and support Th2 and Treg immune responses, and finally 3) IL-17A contributes to FGL2 secretion. Based on the present findings in mice, we will investigate FGL2 as a potential marker of progression of AE in human patients, or as a potential immunotherapeutical target. Early prediction of parasite regression (currently not yet possible) would allow clinicians to plan for withdrawing benzimidazole treatment, which is currently administered for life. Then, FGL2 should be investigated as a target for an anticipated immunomodulatory treatment of patients with progressive AE, especially of those who are non- or low-responders to benzimidazole treatment, or who suffer from side-effects due to chemotherapy.
PMCID: PMC4425495  PMID: 25955764
3.  Trypanosoma brucei RRM1 Is a Nuclear RNA-Binding Protein and Modulator of Chromatin Structure 
mBio  2015;6(2):e00114-15.
TbRRM1 of Trypanosoma brucei is a nucleoprotein that was previously identified in a search for splicing factors in T. brucei. We show that TbRRM1 associates with mRNAs and with the auxiliary splicing factor polypyrimidine tract-binding protein 2, but not with components of the core spliceosome. TbRRM1 also interacts with several retrotransposon hot spot (RHS) proteins and histones. RNA immunoprecipitation of a tagged form of TbRRM1 from procyclic (insect) form trypanosomes identified ca. 1,500 transcripts that were enriched and 3,000 transcripts that were underrepresented compared to cellular mRNA. Enriched transcripts encoded RNA-binding proteins, including TbRRM1 itself, several RHS transcripts, mRNAs with long coding regions, and a high proportion of stage-regulated mRNAs that are more highly expressed in bloodstream forms. Transcripts encoding ribosomal proteins, other factors involved in translation, and procyclic-specific transcripts were underrepresented. Knockdown of TbRRM1 by RNA interference caused widespread changes in mRNA abundance, but these changes did not correlate with the binding of the protein to transcripts, and most splice sites were unchanged, negating a general role for TbRRM1 in splice site selection. When changes in mRNA abundance were mapped across the genome, regions with many downregulated mRNAs were identified. Two regions were analyzed by chromatin immunoprecipitation, both of which exhibited increases in nucleosome occupancy upon TbRRM1 depletion. In addition, subjecting cells to heat shock resulted in translocation of TbRRM1 to the cytoplasm and compaction of chromatin, consistent with a second role for TbRRM1 in modulating chromatin structure.
Trypanosoma brucei, the parasite that causes human sleeping sickness, is transmitted by tsetse flies. The parasite progresses through different life cycle stages in its two hosts, altering its pattern of gene expression in the process. In trypanosomes, protein-coding genes are organized as polycistronic units that are processed into monocistronic mRNAs. Since genes in the same unit can be regulated independently of each other, it is believed that gene regulation is essentially posttranscriptional. In this study, we investigated the role of a nuclear RNA-binding protein, TbRRM1, in the insect stage of the parasite. We found that TbRRM1 binds nuclear mRNAs and also affects chromatin status. Reduction of nuclear TbRRM1 by RNA interference or heat shock resulted in chromatin compaction. We propose that TbRRM1 regulates RNA polymerase II-driven gene expression both cotranscriptionally, by facilitating transcription and efficient splicing, and posttranscriptionally, via its interaction with nuclear mRNAs.
PMCID: PMC4453557  PMID: 25784696
4.  Influence of the gestational stage on the clinical course, lesional development and parasite distribution in experimental ovine neosporosis 
Veterinary Research  2015;46:19.
Neospora caninum is considered one of the main causes of abortion in cattle, yet recent studies have also emphasised its relevance as an abortifacient in small ruminants. In order to gain deeper insight into the pathogenesis of ovine neosporosis, pregnant ewes were intravenously inoculated with 106 tachyzoites of the Nc-Spain7 isolate at days 40, 90 or 120 of gestation. Infection during the first term resulted in the death of all foetuses between days 19 and 21 post-infection, showing mainly necrotic lesions in foetal liver and the highest parasite DNA detection and burden in both placenta and foetal viscera. After infection at day 90, foetal death was also detected in all ewes, although later (34–48 days post-infection). In this group, lesions were mainly inflammatory. Foetal livers showed the lowest frequency of lesions, as well as the lowest parasite detection and burden. All ewes infected at day 120 delivered viable lambs, although 3 out of 9 showed weakness and recumbency. Neospora DNA was detected in all lambs but one, and parasite burden was similar to that observed in day 90 group. Lesions in this group showed more conspicuous infiltration of inflammatory cells and higher frequency in foetal brain and muscle when compared to both previous groups. These results highlight the crucial role that the stage of gestation plays on the course of ovine neosporosis, similar to that reported in bovine neosporosis, and open the doors to consider sheep as a valid model for exogenous transplacental transmission for ruminant neosporosis.
Electronic supplementary material
The online version of this article (doi:10.1186/s13567-014-0139-y) contains supplementary material, which is available to authorized users.
PMCID: PMC4346111  PMID: 25884945
5.  Buparvaquone is active against Neospora caninum in vitro and in experimentally infected mice 
•Buparvaquone inhibits proliferation of Neospora caninum at nanomolar concentrations.•In vitro, the drug acts mainly parasitostatic.•Parasiticidal effects occur at µmolar concentrations after extended periods of time.•Buparvaquone acts slowly as evidenced by transmission electron microscopy.•Buparvaquone prevents clinical signs of acute neosporosis in mice.
Graphical Abstract
The naphthoquinone buparvaquone is currently the only drug used against theileriosis. Here, the effects of buparvaquone were investigated in vitro and in an experimental mouse model for Neospora caninum infection. In 4-day proliferation assays, buparvaquone efficiently inhibited N. caninum tachyzoite replication (IC50 = 4.9 nM; IC100 = 100 nM). However, in the long term tachyzoites adapted and resumed proliferation in the presence of 100 nM buparvaquone after 20 days of cultivation. Parasiticidal activity was noted after 9 days of culture in 0.5 µM or 6 days in 1 µM buparvaquone. TEM of N. caninum infected fibroblasts treated with 1 µM buparvaquone showed that the drug acted rather slowly, and ultrastructural changes were evident only after 3–5 days of treatment, including severe alterations in the parasite cytoplasm, changes in the composition of the parasitophorous vacuole matrix and a diminished integrity of the vacuole membrane. Treatment of N. caninum infected mice with buparvaquone (100 mg/kg) either by intraperitoneal injection or gavage prevented neosporosis symptoms in 4 out of 6 mice in the intraperitoneally treated group, and in 6 out of 7 mice in the group receiving oral treatment. In the corresponding controls, all 6 mice injected intraperitoneally with corn oil alone died of acute neosporosis, and 4 out of 6 mice died in the orally treated control group. Assessment of infection intensities in the treatment groups showed that, compared to the drug treated groups, the controls showed a significantly higher parasite load in the lungs while cerebral parasite load was higher in the buparvaquone-treated groups. Thus, although buparvaquone did not eliminate the parasites infecting the CNS, the drug represents an interesting lead with the potential to eliminate, or at least diminish, fetal infection during pregnancy.
PMCID: PMC4412913  PMID: 25941626
Neospora caninum; Neosporosis; Buparvaquone; Electron microscopy; Cerebral infection; Real time PCR
6.  Profound Activity of the Anti-cancer Drug Bortezomib against Echinococcus multilocularis Metacestodes Identifies the Proteasome as a Novel Drug Target for Cestodes 
A library of 426 FDA-approved drugs was screened for in vitro activity against E. multilocularis metacestodes employing the phosphoglucose isomerase (PGI) assay. Initial screening at 20 µM revealed that 7 drugs induced considerable metacestode damage, and further dose-response studies revealed that bortezomib (BTZ), a proteasome inhibitor developed for the chemotherapy of myeloma, displayed high anti-metacestodal activity with an EC50 of 0.6 µM. BTZ treatment of E. multilocularis metacestodes led to an accumulation of ubiquinated proteins and unequivocally parasite death. In-gel zymography assays using E. multilocularis extracts demonstrated BTZ-mediated inhibition of protease activity in a band of approximately 23 kDa, the same size at which the proteasome subunit beta 5 of E. multilocularis could be detected by Western blot. Balb/c mice experimentally infected with E. multilocularis metacestodes were used to assess BTZ treatment, starting at 6 weeks post-infection by intraperitoneal injection of BTZ. This treatment led to reduced parasite weight, but to a degree that was not statistically significant, and it induced adverse effects such as diarrhea and neurological symptoms. In conclusion, the proteasome was identified as a drug target in E. multilocularis metacestodes that can be efficiently inhibited by BTZ in vitro. However, translation of these findings into in vivo efficacy requires further adjustments of treatment regimens using BTZ, or possibly other proteasome inhibitors.
Author Summary
Tapeworms (cestodes) are a class of important human pathogens, causing very severe diseases in man such as alveolar echinococcosis (Echinococcus multilocularis), cystic echinococcosis (E. granulosus) and neurocysticercosis (Taenia solium). Current treatments are mainly based on benzimidazoles that show some limited activity against cestode larvae, but often do not kill them. These compounds have to be taken for extended periods of time, and can cause adverse side-effects. Cestode infections cause neglected diseases and the pharmaceutical industry is generally not interested in investments for developing novel bioactive compounds. In this study we focus on a panel of FDA-approved drugs and assessed them in E. multilocularis, which causes the most deadly of all helminth infections. One compound, the anti-cancer drug bortezomib, exhibits considerable in vitro activity against E. multilocularis metacestodes, and we provide evidence that it acts on the proteasome. In experimentally infected mice bortezomib activity was lower than the currently used albendazole and induced adverse effects. Bortezomib is therefore not a useful drug for treatment of Echinococcus larvae, but our results demonstrate that in future studies the cestode proteasome should gain more attention as a drug target.
PMCID: PMC4256282  PMID: 25474446
7.  A quantitative reverse-transcriptase PCR assay for the assessment of drug activities against intracellular Theileria annulata schizonts 
Graphical abstract
•Quantitative RT real time PCR was used to assess metabolic impairment of Theileria schizonts.•The method was validated with buparvaquone.•Buparvaquone acts directly and rapidly on the parasite within 1 h of treatment.•Electron microscopy confirmed these findings.•A series of anti-parasitic compounds and antibiotics acted primarily on the host cells.
Intracellular schizonts of the apicomplexans Theileria annulata and Theileria parva immortalize bovine leucocytes thereby causing fatal immunoproliferative diseases. Buparvaquone, a hydroxynaphthoquinone related to parvaquone, is the only drug available against Theileria. The drug is only effective at the onset of infection and emerging resistance underlines the need for identifying alternative compounds. Current drug assays employ monitoring of proliferation of infected cells, with apoptosis of the infected host cell as a read-out, but it is often unclear whether active compounds directly impair the viability of the parasite or primarily induce host cell death. We here report on the development of a quantitative reverse transcriptase real time PCR method based on two Theileria genes, tasp and tap104, which are both expressed in schizonts. Upon in vitro treatment of T. annulata infected bovine monocytes with buparvaquone, TaSP and Tap104 mRNA expression levels significantly decreased in relation to host cell actin already within 4 h of drug exposure, while significant differences in host cell proliferation were detectable only after 48–72 h. TEM revealed marked alterations of the schizont ultrastructure already after 2 h of buparvaquone treatment, while the host cell remained unaffected. Expression of TaSP and Tap104 proteins showed a marked decrease only after 24 h. Therefore, the analysis of expression levels of mRNA coding for TaSP and Tap104 allows to directly measuring impairment of parasite viability. We subsequently applied this method using a series of compounds affecting different targets in other apicomplexan parasites, and show that monitoring of TaSP- and Tap104 mRNA levels constitutes a suitable tool for anti-theilerial drug development.
PMCID: PMC4266814  PMID: 25516828
Theileria; Theileriosis; Apicomplexa; Chemotherapy; Real time PCR; Electron microscopy; Apoptosis
8.  Echinococcus P29 Antigen: Molecular Characterization and Implication on Post-Surgery Follow-Up of CE Patients Infected with Different Species of the Echinococcus granulosus Complex 
PLoS ONE  2014;9(5):e98357.
The protein P29 is a potential serological marker for post-treatment monitoring of cystic echinococcosis (CE) especially in young patients. We now have demonstrated that P29 is encoded in the Echinococcus genus by a single gene consisting of 7 exons spanning 1.2 kb of DNA. Variability of the p29 gene at inter- and intra-species level was assessed with 50 cDNA and 280 genomic DNA clones isolated from different E. granulosus s.l. isolates (E. granulosus sensu stricto (G1), E. equinus (G4), E. ortleppi (G5), E. canadensis (G6), E. canadensis (G7) and E. canadensis (G10)) as well as four E. multilocularis isolates. Scarce interspecies polymorphism at the p29 locus was observed and affected predominantly E. granulosus s.s. (G1), where we identified two alleles (A1 and A2) coding for identical P29 proteins and yielding in three genotypes (A1/A1, A2/A2 and A1/A2). Genotypic frequencies expected under Hardy-Weinberg equilibrium revealed a high rate of heterozygosity (47%) that strongly supports the hypothesis that E. granulosus s.s. (G1) is predominantly outbreeding. Comparative sequence analyses of the complete p29 gene showed that phylogenetic relationships within the genus Echinococcus were in agreement with those of previous nuclear gene studies. At the protein level, the deduced P29 amino acid (AA) sequences exhibited a high level of conservation, ranging from 97.9% AA sequence identity among the whole E. granulosus s.l. group to 99.58% identity among E. multilocularis isolates. We showed that P29 proteins of these two species differ by three AA substitutions without implication for antigenicity. In Western-blot analyses, serum antibodies from a human CE patient infected with E. canadensis (G6) strongly reacted with recombinant P29 from E. granulosus s.s. (G1) (recEg(G1)P29). In the same line, human anti-Eg(G1)P29 antibodies bound to recEcnd(G6)P29. Thus, minor AA sequence variations appear not to impair the prognostic serological use of P29.
PMCID: PMC4031130  PMID: 24851904
9.  In Vitro Effects of Novel Ruthenium Complexes in Neospora caninum and Toxoplasma gondii Tachyzoites 
Antimicrobial Agents and Chemotherapy  2013;57(11):5747-5754.
Upon the screening of 16 antiproliferative compounds against Toxoplasma gondii and Neospora caninum, two hydrolytically stable ruthenium complexes (compounds 16 and 18) exhibited 50% inhibitory concentrations of 18.7 and 41.1 nM (T. gondii) and 6.7 and 11.3 nM (N. caninum). To achieve parasiticidal activity with compound 16, long-term treatment (22 to 27 days at 80 to 160 nM) was required. Transmission electron microscopy demonstrated the rapid impact on and ultrastructural alterations in both parasites. These preliminary findings suggest that the potential of ruthenium-based compounds should thus be further exploited.
PMCID: PMC3811262  PMID: 23979747
10.  Neospora caninum Calcium-Dependent Protein Kinase 1 Is an Effective Drug Target for Neosporosis Therapy 
PLoS ONE  2014;9(3):e92929.
Despite the enormous economic importance of Neospora caninum related veterinary diseases, the number of effective therapeutic agents is relatively small. Development of new therapeutic strategies to combat the economic impact of neosporosis remains an important scientific endeavor. This study demonstrates molecular, structural and phenotypic evidence that N. caninum calcium-dependent protein kinase 1 (NcCDPK1) is a promising molecular target for neosporosis drug development. Recombinant NcCDPK1 was expressed, purified and screened against a select group of bumped kinase inhibitors (BKIs) previously shown to have low IC50s against Toxoplasma gondii CDPK1 and T. gondii tachyzoites. NcCDPK1 was inhibited by low concentrations of BKIs. The three-dimensional structure of NcCDPK1 in complex with BKIs was studied crystallographically. The BKI-NcCDPK1 structures demonstrated the structural basis for potency and selectivity. Calcium-dependent conformational changes in solution as characterized by small-angle X-ray scattering are consistent with previous structures in low Calcium-state but different in the Calcium-bound active state than predicted by X-ray crystallography. BKIs effectively inhibited N. caninum tachyzoite proliferation in vitro. Electron microscopic analysis of N. caninum cells revealed ultra-structural changes in the presence of BKI compound 1294. BKI compound 1294 interfered with an early step in Neospora tachyzoite host cell invasion and egress. Prolonged incubation in the presence of 1294 interfered produced observable interference with viability and replication. Oral dosing of BKI compound 1294 at 50 mg/kg for 5 days in established murine neosporosis resulted in a 10-fold reduced cerebral parasite burden compared to untreated control. Further experiments are needed to determine the PK, optimal dosage, and duration for effective treatment in cattle and dogs, but these data demonstrate proof-of-concept for BKIs, and 1294 specifically, for therapy of bovine and canine neosporosis.
PMCID: PMC3969379  PMID: 24681759
11.  In Vitro and In Vivo Activities of Dicationic Diguanidino Compounds against Echinococcus multilocularis Metacestodes 
Alveolar echinococcosis (AE) is a disease predominantly affecting the liver, with metacestodes (larvae) of the tapeworm Echinococcus multilocularis proliferating and exhibiting tumor-like infiltrative growth. For many years, chemotherapeutical treatment against alveolar echinococcosis has relied on the benzimidazoles albendazole and mebendazole, which require long treatment durations and exhibit parasitostatic rather than parasiticidal efficacy. Although benzimidazoles have been and still are beneficial for the patients, there is clearly a demand for alternative and more efficient treatment options. Aromatic dications, more precisely a small panel of di-N-aryl-diguanidino compounds, were screened for efficacy against E. multilocularis metacestodes in vitro. Only those with a thiophene core group were active against metacestodes, while furans were not. The most active compound, DB1127, was further investigated in terms of in vivo efficacy in mice experimentally infected with E. multilocularis metacestodes. This diguanidino compound was effective against AE when administered intraperitoneally but not when applied orally. Thus, thiophene-diguanidino derivatives with improved bioavailability when administered orally could lead to treatment options against AE.
PMCID: PMC3719769  PMID: 23716058
12.  Host insulin stimulates Echinococcus multilocularis insulin signalling pathways and larval development 
BMC Biology  2014;12:5.
The metacestode of the tapeworm Echinococcus multilocularis is the causative agent of alveolar echinococcosis, a lethal zoonosis. Infections are initiated through establishment of parasite larvae within the intermediate host’s liver, where high concentrations of insulin are present, followed by tumour-like growth of the metacestode in host organs. The molecular mechanisms determining the organ tropism of E. multilocularis or the influences of host hormones on parasite proliferation are poorly understood.
Using in vitro cultivation systems for parasite larvae we show that physiological concentrations (10 nM) of human insulin significantly stimulate the formation of metacestode larvae from parasite stem cells and promote asexual growth of the metacestode. Addition of human insulin to parasite larvae led to increased glucose uptake and enhanced phosphorylation of Echinococcus insulin signalling components, including an insulin receptor-like kinase, EmIR1, for which we demonstrate predominant expression in the parasite’s glycogen storage cells. We also characterized a second insulin receptor family member, EmIR2, and demonstrated interaction of its ligand binding domain with human insulin in the yeast two-hybrid system. Addition of an insulin receptor inhibitor resulted in metacestode killing, prevented metacestode development from parasite stem cells, and impaired the activation of insulin signalling pathways through host insulin.
Our data indicate that host insulin acts as a stimulant for parasite development within the host liver and that E. multilocularis senses the host hormone through an evolutionarily conserved insulin signalling pathway. Hormonal host-parasite cross-communication, facilitated by the relatively close phylogenetic relationship between E. multilocularis and its mammalian hosts, thus appears to be important in the pathology of alveolar echinococcosis. This contributes to a closer understanding of organ tropism and parasite persistence in larval cestode infections. Furthermore, our data show that Echinococcus insulin signalling pathways are promising targets for the development of novel drugs.
PMCID: PMC3923246  PMID: 24468049
Cestode; Tapeworm; Echinococcus; Echinococcosis; Insulin; Receptor kinase; Kinase inhibitor; Host-parasite interaction
13.  Treatment of echinococcosis: albendazole and mebendazole – what else? 
Parasite  2014;21:70.
The search for novel therapeutic options to cure alveolar echinococcosis (AE), due to the metacestode of Echinococcus multilocularis, is ongoing, and these developments could also have a profound impact on the treatment of cystic echinococcosis (CE), caused by the closely related Echinococcus granulosus s.l. Several options are being explored. A viable strategy for the identification of novel chemotherapeutically valuable compounds includes whole-organism drug screening, employing large-scale in vitro metacestode cultures and, upon identification of promising compounds, verification of drug efficacy in small laboratory animals. Clearly, the current focus is targeted towards broad-spectrum anti-parasitic or anti-cancer drugs and compound classes that are already marketed, or that are in development for other applications. The availability of comprehensive Echinococcus genome information and gene expression data, as well as significant progress on the molecular level, has now opened the door for a more targeted drug discovery approach, which allows exploitation of defined pathways and enzymes that are essential for the parasite. In addition, current in vitro and in vivo models that are used to assess drug efficacy should be optimized and complemented by methods that give more detailed information on the host-parasite interactions that occur during drug treatments. The key to success is to identify, target and exploit those parasite molecules that orchestrate activities essential to parasite survival.
PMCID: PMC4271654  PMID: 25526545
Alveolar echinococcosis (AE); Echinococcus multilocularis chemotherapy; In vitro culture; Drugs; Host-parasite interaction
14.  Use of a Th1 Stimulator Adjuvant for Vaccination against Neospora caninum Infection in the Pregnant Mouse Model 
Pathogens  2013;2(2):193-208.
Vertical transmission from an infected cow to its fetus accounts for the vast majority of new Neospora caninum infections in cattle. A vaccine composed of a chimeric antigen named recNcMIC3-1-R, based on predicted immunogenic domains of the two microneme proteins NcMIC1 and NcMIC3, the rhoptry protein NcROP2, and emulsified in saponin adjuvants, significantly reduced the cerebral infection in non-pregnant BALB/c mice. Protection was associated with a mixed Th1/Th2-type cytokine response. However, the same vaccine formulation elicited a Th2-type immune response in pregnant mice and did not prevent vertical transmission or disease, neither in dams nor in offspring mice. In this study, an alternative vaccine formulation containing recNcMIC3-1-R emulsified in Freund’s incomplete adjuvant, a stimulator of the cellular immunity, was investigated. No protection against vertical transmission and cerebral infection in the pregnant mice and a very limited protective effect in the non-pregnant mice were observed. The vaccine induced a Th1-type immune response characterized by high IgG2a titres and strong IFN-γ expression, which appeared detrimental to pregnancy.
PMCID: PMC4235717  PMID: 25437035
Neospora caninum; vaccination; recombinant antigen; pregnancy; vertical transmission; cytokines; mouse model; abortion
15.  Subcutaneous Infection Model Facilitates Treatment Assessment of Secondary Alveolar Echinococcosis in Mice 
Alveolar echinococcosis (AE) in humans is a parasitic disease characterized by severe damage to the liver and occasionally other organs. AE is caused by infection with the metacestode (larval) stage of the fox tapeworm Echinococcus multilocularis, usually infecting small rodents as natural intermediate hosts. Conventionally, human AE is chemotherapeutically treated with mebendazole or albendazole. There is, however still the need for improved chemotherapeutical options. Primary in vivo studies on drugs of interest are commonly performed in small laboratory animals such as mice and Mongolian jirds, and in most cases, a secondary infection model is used, whereby E. multilocularis metacestodes are directly injected into the peritoneal cavity or into the liver. Disadvantages of this methodological approach include risk of injury to organs during the inoculation and, most notably, a limitation in the macroscopic (visible) assessment of treatment efficacy. Thus, in order to monitor the efficacy of chemotherapeutical treatment, animals have to be euthanized and the parasite tissue dissected. In the present study, mice were infected with E. multilocularis metacestodes through the subcutaneous route and were then subjected to chemotherapy employing albendazole. Serological responses to infection were comparatively assessed in mice infected by the conventional intraperitoneal route. We demonstrate that the subcutaneous infection model for secondary AE facilitates the assessment of the progress of infection and drug treatment in the live animal.
Author Summary
Alveolar echinococcosis is a disease which affects humans and inflicts severe damage to the liver and other organs. It is caused by a parasite whose definitive host is the fox. Despite being a relatively rare disease, an increasing number of new cases has been reported in central and eastern European countries more recently. The current therapy in human AE patients consists of benzimidazoles. The treatment has to be taken on a daily basis for very long periods of time, or even lifelong. New options are currently being searched for, mainly based on compounds that show efficacy in experimental animal infection models. The infection is commonly done by injecting parasites directly into the peritoneal cavity of the animals, with risk of damage to the surrounding organs. The efficacy of applied treatments can only be evaluated at the end of the studies by dissection of the animals. In this study we show that the subcutaneous infection model can be applied for drug treatment trials and enables the direct monitoring of treatment effects during the entire study period.
PMCID: PMC3662659  PMID: 23717701
16.  Di-cationic arylimidamides act against Neospora caninum tachyzoites by interference in membrane structure and nucleolar integrity and are active against challenge infection in mice 
Graphical abstract
► The dicationic arylimidamide DB745 is highly active against Neospora caninum tachyzoites in vitro. ► The drug inhibits host cell invasion and intracellular proliferation. ► DB745 interferes in the structural integrity of the parasite plasma membrane and the nucleolus. ► The two N. caninum isolates Nc-1 and Nc-Liverpool differ in their ability to adapt to DB745 in vitro. ► In vivo treatment of Nc-1 infected mice with DB745 reduces clinical signs and cerebral parasite load.
Neospora caninum is considered to be the main cause of bovine abortion in Europe and the USA, leading to considerable financial impact. Losses are caused directly by abortions or indirectly through breeding of calves with impaired viability. Due to the lack of effective chemotherapy against bovine neosporosis, there is a need to develop new anti-protozoal compounds, which would either eliminate the parasite or avoid its transmission. In order to identify compounds of interest, the in vitro activities of 41 di-cationic pentamidine derivatives were studied employing a transgenic N. caninum clone expressing beta-galactosidase as a reporter gene. The arylimidamide DB745, previously shown to be highly active against Leishmania donovani in vitro and in vivo, appeared as the most promising compound, with an IC50 of 80 nM in 3-day growth assays and severely affecting both host cell invasion as well as intracellular proliferation. TEM of intracellular tachyzoites identified distinct alterations related to the nucleolus and the nuclear and cellular membrane. Long-term growth assays showed that DB745 acted parasiticidal upon the Nc-Liv isolate, but not against the Nc-1 isolate of N. caninum. In vivo studies in N. caninum (Nc-1 isolate) infected mice showed that daily intraperitoneal application of DB745 for a period of 14 days resulted in a decreased number of clinically affected animals, and lower cerebral parasite burdens in DB745-treated mice compared to non-treated mice. These results illustrate the potential of dicationic arylimidamides for the treatment of N. caninum infections.
PMCID: PMC3862485  PMID: 24533272
Neospora caninum; Arylimidamides; Tachyzoites; Proliferation; Invasion; Nucleolus; Membrane integrity; In vivo activity
17.  In Vitro Efficacy of Dicationic Compounds and Mefloquine Enantiomers against Echinococcus multilocularis Metacestodes▿ 
Antimicrobial Agents and Chemotherapy  2011;55(10):4866-4872.
The current chemotherapy of alveolar echinococcosis (AE) is based on benzimidazoles such as albendazole and has been shown to be parasitostatic rather than parasiticidal, requiring lifelong duration. Thus, new and more efficient treatment options are urgently needed. By employing a recently validated assay based on the release of functional phosphoglucose isomerase (PGI) from dying parasites, the activities of 26 dicationic compounds and of the (+)- and (−)-erythro-enantiomers of mefloquine were investigated. Initial screening of compounds was performed at 40 μM, and those compounds exhibiting considerable antiparasitic activities were also assessed at lower concentrations. Of the dicationic drugs, DB1127 (a diguanidino compound) with activities comparable to nitazoxanide was further studied. The activity of DB1127 was dose dependent and led to severe structural alterations, as visualized by electron microscopy. The (+)- and (−)-erythro-enantiomers of mefloquine showed similar dose-dependent effects, although higher concentrations of these compounds than of DB1127 were required for metacestode damage. In conclusion, of the drugs investigated here, the diguanidino compound DB1127 represents the most promising compound for further study in appropriate in vivo models for Echinococcus multilocularis infection.
PMCID: PMC3186988  PMID: 21768518
18.  In Vitro and In Vivo Efficacies of Mefloquine-Based Treatment against Alveolar Echinococcosis▿  
Alveolar echinococcosis (AE) is caused by the metacestode stage of the fox tapeworm Echinococcus multilocularis and causes severe disease in the human liver, and occasionally in other organs, that is fatal when treatment is unsuccessful. The present chemotherapy against AE is based on mebendazole and albendazole. Albendazole treatment has been found to be ineffective in some instances, is parasitostatic rather than parasiticidal, and usually involves the lifelong uptake of large doses of drugs. Thus, new treatment options are urgently needed. In this study we investigated the in vitro and in vivo efficacy of mefloquine against E. multilocularis metacestodes. Treatment using mefloquine (20 μM) against in vitro cultures of metacestodes resulted in rapid and complete detachment of large parts of the germinal layer from the inner surface of the laminated layer within a few hours. The in vitro activity of mefloquine was dependent on the dosage. In vitro culture of metacestodes in the presence of 24 μM mefloquine for a period of 10 days was parasiticidal, as determined by murine bioassays, while treatment with 12 μM was not. Oral application of mefloquine (25 mg/kg of body weight administered twice a week for a period of 8 weeks) in E. multilocularis-infected mice was ineffective in achieving any reduction of parasite weight, whereas treatment with albendazole (200 mg/kg/day) was highly effective. However, when the same mefloquine dosage was applied intraperitoneally, the reduction in parasite weight was similar to the reduction seen with oral albendazole application. Combined application of both drugs did not increase the treatment efficacy. In conclusion, mefloquine represents an interesting drug candidate for the treatment of AE, and these results should be followed up in appropriate in vivo studies.
PMCID: PMC3028781  PMID: 21135182
19.  In Vitro and In Vivo Treatments of Echinococcus Protoscoleces and Metacestodes with Artemisinin and Artemisinin Derivatives▿  
In vitro treatment of Echinococcus multilocularis and Echinococcus granulosus larval stages with the antimalarials dihydroartemisinin and artesunate (10 to 40 μM) exhibited promising results, while 6 weeks of in vivo treatment of mice infected with E. multilocularis metacestodes (200 mg/kg of body weight/day) had no effect. However, combination treatments of both drugs with albendazole led to a substantial but statistically not significant reduction in parasite weight compared to results with albendazole alone.
PMCID: PMC2533465  PMID: 18625777
20.  Major Surface Glycoproteins of Insect Forms of Trypanosoma brucei Are Not Essential for Cyclical Transmission by Tsetse 
PLoS ONE  2009;4(2):e4493.
Procyclic forms of Trypanosoma brucei reside in the midgut of tsetse flies where they are covered by several million copies of glycosylphosphatidylinositol-anchored proteins known as procyclins. It has been proposed that procyclins protect parasites against proteases and/or participate in tropism, directing them from the midgut to the salivary glands. There are four different procyclin genes, each subject to elaborate levels of regulation. To determine if procyclins are essential for survival and transmission of T. brucei, all four genes were deleted and parasite fitness was compared in vitro and in vivo. When co-cultured in vitro, the null mutant and wild type trypanosomes (tagged with cyan fluorescent protein) maintained a near-constant equilibrium. In contrast, when flies were infected with the same mixture, the null mutant was rapidly overgrown in the midgut, reflecting a reduction in fitness in vivo. Although the null mutant is patently defective in competition with procyclin-positive parasites, on its own it can complete the life cycle and generate infectious metacyclic forms. The procyclic form of T. brucei thus differs strikingly from the bloodstream form, which does not tolerate any perturbation of its variant surface glycoprotein coat, and from other parasites such as Plasmodium berghei, which requires the circumsporozoite protein for successful transmission to a new host.
PMCID: PMC2637416  PMID: 19223969
21.  Host Cells Participate in the In Vitro Effects of Novel Diamidine Analogues against Tachyzoites of the Intracellular Apicomplexan Parasites Neospora caninum and Toxoplasma gondii▿  
The in vitro effects of 19 dicationic diamidine derivatives against the proliferative tachyzoite stages of the apicomplexan parasites Neospora caninum and Toxoplasma gondii were investigated. Four compounds (DB811, DB786, DB750, and DB766) with similar structural properties exhibited profound inhibition of tachyzoite proliferation. The lowest 50% inhibitory concentrations were found for DB786 (0.21 μM against Neospora and 0.22 μM against Toxoplasma) and DB750 (0.23 μM against Neospora and 0.16 μM against Toxoplasma), with complete proliferation inhibition at 1.7 μM for both drugs against both species. DB750 and DB786 were chosen for further studies. Electron microscopy of N. caninum-infected human foreskin fibroblast (HFF) cultures revealed distinct alterations and damage of parasite ultrastructure upon drug treatment, while host cells remained unaffected. For true parasiticidal efficacy against N. caninum, a treatment duration of 3 h at 1.7 μM was sufficient for DB750, while a longer treatment period (24 h) was necessary for DB786. Pretreatment of tachyzoites for 1 h prior to host cell exposure had no effect on infectivity. However, pretreatment of uninfected host cells had a significant adverse effect on N. caninum proliferation: exposure of HFFs to 1.7 μM DB750 for 6, 12, or 24 h, followed by infection with N. caninum tachyzoites and subsequent culture in the absence of DB750, resulted in significantly delayed parasite proliferation. This suggests that either (i) these compounds or their respective active metabolites were still present after the removal of the drugs or (ii) the drug treatments reversibly impaired some functional activities in HFFs that were essential for parasite proliferation and/or survival.
PMCID: PMC2415759  PMID: 18362190
22.  Peroxide Bond-Dependent Antiplasmodial Specificity of Artemisinin and OZ277 (RBx11160)▿  
Using nonperoxidic analogs of artemisinin and OZ277 (RBx11160), the strong in vitro antiplasmodial activities of the latter two compounds were shown to be peroxide bond dependent. In contrast, the weak activities of artemisinin and OZ277 against six other protozoan parasites were peroxide bond independent. These data support the iron-dependent artemisinin alkylation hypothesis.
PMCID: PMC1932508  PMID: 17562801
23.  A Novel Giardia lamblia Nitroreductase, GlNR1, Interacts with Nitazoxanide and Other Thiazolides▿  
The nitrothiazole analogue nitazoxanide [NTZ; 2-acetolyloxy-N-(5-nitro-2-thiazolyl)benzamide] represents the parent compound of a class of drugs referred to as thiazolides and exhibits a broad spectrum of activities against a wide variety of helminths, protozoa, and enteric bacteria infecting animals and humans. NTZ and other thiazolides are active against a wide range of other intracellular and extracellular protozoan parasites in vitro and in vivo, but their mode of action and respective subcellular target(s) have only recently been investigated. In order to identify potential targets of NTZ and other thiazolides in Giardia lamblia trophozoites, we have developed an affinity chromatography system using the deacetylated derivative of NTZ, tizoxanide (TIZ), as a ligand. Affinity chromatography on TIZ-agarose using cell extracts of G. lamblia trophozoites resulted in the isolation of an approximately 35-kDa polypeptide, which was identified by mass spectrometry as a nitroreductase (NR) homologue (EAA43030.1). NR was overexpressed as a six-histidine-tagged recombinant protein in Escherichia coli, purified, and then characterized using an assay for oxygen-insensitive NRs with dinitrotoluene as a substrate. This demonstrated that the NR was functionally active, and the protein was designated GlNR1. In this assay system, NR activity was severely inhibited by NTZ and other thiazolides, demonstrating that the antigiardial activity of these drugs could be, at least partially, mediated through inhibition of GlNR1.
PMCID: PMC1891416  PMID: 17438059
24.  In Vitro Metacestodicidal Activities of Genistein and Other Isoflavones against Echinococcus multilocularis and Echinococcus granulosus▿  
Antimicrobial Agents and Chemotherapy  2006;50(11):3770-3778.
Echinococcus multilocularis and Echinococcus granulosus metacestode infections in humans cause alveolar echinococcosis and cystic echinococcosis, respectively, in which metacestode development in visceral organs often results in particular organ failure. Further, cystic hydatidosis in farm animals causes severe economic losses. Although benzimidazole derivatives such as mebendazole and albendazole are being used as therapeutic agents, there is often no complete recovery after treatment. Hence, in searching for novel treatment options, we examined the in vitro efficacies of a number of isoflavones against Echinococcus metacestodes and protoscoleces. The most prominent isoflavone, genistein, exhibits significant metacestodicidal activity in vitro. However, genistein binds to the estrogen receptor and can thus induce estrogenic effects, which is a major concern during long-term chemotherapy. We have therefore investigated the activities of a number of synthetic genistein derivatives carrying a modified estrogen receptor binding site. One of these, Rm6423, induced dramatic breakdown of the structural integrity of the metacestode germinal layer of both species within 5 to 7 days of in vitro treatment. Further, examination of the culture medium revealed increased leakage of parasite proteins into the medium during treatment, but zymography demonstrated a decrease in the activity of metalloproteases. Moreover, two of the genistein derivatives, Rm6423 and Rm6426, induced considerable damage in E. granulosus protoscoleces, rendering them nonviable. These findings demonstrate that synthetic isoflavones exhibit distinct in vitro effects on Echinococcus metacestodes and protoscoleces, which could potentially be exploited further for the development of novel chemotherapeutical tools against larval-stage Echinococcus infection.
PMCID: PMC1635224  PMID: 16954323
25.  In Vitro Effects of Thiazolides on Giardia lamblia WB Clone C6 Cultured Axenically and in Coculture with Caco2 Cells 
The thiazolides represent a novel class of anti-infective drugs, with the nitrothiazole nitazoxanide [2-acetolyloxy-N-(5-nitro 2-thiazolyl) benzamide] (NTZ) as the parent compound. NTZ exhibits a broad spectrum of activities against a wide variety of helminths, protozoa, and enteric bacteria infecting animals and humans. In vivo, NTZ is rapidly deacetylated to tizoxanide (TIZ), which exhibits similar activities. We have here comparatively investigated the in vitro effects of NTZ, TIZ, a number of other modified thiazolides, and metronidazole (MTZ) on Giardia lamblia trophozoites grown under axenic culture conditions and in coculture with the human cancer colon cell line Caco2. The modifications of the thiazolides included, on one hand, the replacement of the nitro group on the thiazole ring with a bromide, and, on the other hand, the differential positioning of methyl groups on the benzene ring. Of seven compounds with a bromo instead of a nitro group, only one, RM4820, showed moderate inhibition of Giardia proliferation in axenic culture, but not in coculture with Caco2 cells, with a 50% inhibitory concentration (IC50) of 18.8 μM; in comparison, NTZ and tizoxanide had IC50s of 2.4 μM, and MTZ had an IC50 of 7.8 μM. Moreover, the methylation or carboxylation of the benzene ring at position 3 resulted in a significant decrease of activity, and methylation at position 5 completely abrogated the antiparasitic effect of the nitrothiazole compound. Trophozoites treated with NTZ showed distinct lesions on the ventral disk as soon as 2 to 3 h after treatment, whereas treatment with metronidazole resulted in severe damage to the dorsal surface membrane at later time points.
PMCID: PMC1346829  PMID: 16377682

Results 1-25 (39)