PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Novel Deletion Mutation Identified in a Patient with Late-Onset Combined Methylmalonic Acidemia and Homocystinuria, cblC Type 
JIMD Reports  2013;11:79-85.
Combined methylmalonic aciduria and homocystinuria, cblC type (MMACHC), is the most common inborn error of cellular vitamin B12 metabolism and is caused by mutations in the MMACHC gene. This metabolic disease results in impaired intracellular synthesis of adenosylcobalamin and methylcobalamin, coenzymes for the methylmalonyl-CoA mutase and methionine synthase enzymes, respectively. The inability to produce normal levels of these two coenzymes leads to increased concentrations of methylmalonic acid and homocysteine in plasma and urine, together with normal or decreased concentration of methionine in plasma. Here, we report a novel homozygous deletion mutation (NM_015506.2:c.392_394del) resulting in an in-frame deletion of amino acid Gln131 and late-onset disease in a 23-year-old male. The patient presented with sensory and motoric disabilities, urine and fecal incontinence, and light cognitive impairment. There was an excessive urinary excretion of methylmalonic acid and greatly elevated plasma homocysteine. The clinical symptoms and the laboratory abnormalities responded partly to treatment with hydroxycobalamin, folinic acid, methionine, and betaine. Studies on patient fibroblasts together with spectroscopic activity assays on recombinant MMACHC protein reveal that Gln131 is crucial in order to maintain enzyme activity. Furthermore, structural analyses show that Gln131 is one of only two residues making hydrogen bonds to the tail of cobalamin. Circular dichroism spectroscopy indicates that the 3D structure of the deletion mutant is folded but perturbed compared to the wild-type protein.
doi:10.1007/8904_2013_225
PMCID: PMC3755550  PMID: 23580368
2.  Nicotinic Receptor Gene CHRNA4 Interacts with Processing Load in Attention 
PLoS ONE  2010;5(12):e14407.
Background
Pharmacological studies suggest that cholinergic neurotransmission mediates increases in attentional effort in response to high processing load during attention demanding tasks [1].
Methodology/Principal Findings
In the present study we tested whether individual variation in CHRNA4, a gene coding for a subcomponent in α4β2 nicotinic receptors in the human brain, interacted with processing load in multiple-object tracking (MOT) and visual search (VS). We hypothesized that the impact of genotype would increase with greater processing load in the MOT task. Similarly, we predicted that genotype would influence performance under high but not low load in the VS task. Two hundred and two healthy persons (age range = 39–77, Mean = 57.5, SD = 9.4) performed the MOT task in which twelve identical circular objects moved about the display in an independent and unpredictable manner. Two to six objects were designated as targets and the remaining objects were distracters. The same observers also performed a visual search for a target letter (i.e. X or Z) presented together with five non-targets while ignoring centrally presented distracters (i.e. X, Z, or L). Targets differed from non-targets by a unique feature in the low load condition, whereas they shared features in the high load condition. CHRNA4 genotype interacted with processing load in both tasks. Homozygotes for the T allele (N = 62) had better tracking capacity in the MOT task and identified targets faster in the high load trials of the VS task.
Conclusion
The results support the hypothesis that the cholinergic system modulates attentional effort, and that common genetic variation can be used to study the molecular biology of cognition.
doi:10.1371/journal.pone.0014407
PMCID: PMC3008676  PMID: 21203548
3.  Suggestive evidence of associations between liver X receptor β polymorphisms with type 2 diabetes mellitus and obesity in three cohort studies: HUNT2 (Norway), MONICA (France) and HELENA (Europe) 
BMC Medical Genetics  2010;11:144.
Background
The liver X receptors (LXR) α and β regulate lipid and carbohydrate homeostasis and inflammation. Lxrβ-/- mice are glucose intolerant and at the same time lean. We aimed to assess the associations between single nucleotide polymorphisms (SNPs) in LXRβ and risk of type 2 diabetes mellitus (T2DM), obesity and related traits in 3 separate cohort studies.
Methods
Twenty LXRβ SNPs were identified by sequencing and genotyped in the HUNT2 adult nested case-control study for T2DM (n = 835 cases/1986 controls). Five tag-SNPs (rs17373080, rs2695121, rs56151148, rs2303044 and rs3219281), covering 99.3% of the entire common genetic variability of the LXRβ gene were identified and genotyped in the French MONICA adult study (n = 2318) and the European adolescent HELENA cross-sectional study (n = 1144). In silico and in vitro functionality studies were performed.
Results
We identified suggestive or significant associations between rs17373080 and the risk of (i) T2DM in HUNT2 (OR = 0.82, p = 0.03), (ii) obesity in MONICA (OR = 1.26, p = 0.05) and (iii) overweight/obesity in HELENA (OR = 1.59, p = 0.002). An intron 4 SNP (rs28514894, a perfect proxy for rs17373080) could potentially create binding sites for hepatic nuclear factor 4 alpha (HNF4α) and nuclear factor 1 (NF1). The C allele of rs28514894 was associated with ~1.25-fold higher human LXRβ basal promoter activity in vitro. However, no differences between alleles in terms of DNA binding and reporter gene transactivation by HNF4α or NF1 were observed.
Conclusions
Our results suggest that rs17373080 in LXRβ is associated with T2DM and obesity, maybe via altered LXRβ expression.
doi:10.1186/1471-2350-11-144
PMCID: PMC2958901  PMID: 20939869
4.  Hippocampal volumes are important predictors for memory function in elderly women 
BMC Medical Imaging  2009;9:17.
Background
Normal aging involves a decline in cognitive function that has been shown to correlate with volumetric change in the hippocampus, and with genetic variability in the APOE-gene. In the present study we utilize 3D MR imaging, genetic analysis and assessment of verbal memory function to investigate relationships between these factors in a sample of 170 healthy volunteers (age range 46–77 years).
Methods
Brain morphometric analysis was performed with the automated segmentation work-flow implemented in FreeSurfer. Genetic analysis of the APOE genotype was determined with polymerase chain reaction (PCR) on DNA from whole-blood. All individuals were subjected to extensive neuropsychological testing, including the California Verbal Learning Test-II (CVLT). To obtain robust and easily interpretable relationships between explanatory variables and verbal memory function we applied the recent method of conditional inference trees in addition to scatterplot matrices and simple pairwise linear least-squares regression analysis.
Results
APOE genotype had no significant impact on the CVLT results (scores on long delay free recall, CVLT-LD) or the ICV-normalized hippocampal volumes. Hippocampal volumes were found to decrease with age and a right-larger-than-left hippocampal asymmetry was also found. These findings are in accordance with previous studies. CVLT-LD score was shown to correlate with hippocampal volume. Multivariate conditional inference analysis showed that gender and left hippocampal volume largely dominated predictive values for CVLT-LD scores in our sample. Left hippocampal volume dominated predictive values for females but not for males. APOE genotype did not alter the model significantly, and age was only partly influencing the results.
Conclusion
Gender and left hippocampal volumes are main predictors for verbal memory function in normal aging. APOE genotype did not affect the results in any part of our analysis.
doi:10.1186/1471-2342-9-17
PMCID: PMC2743662  PMID: 19698138
5.  Mycophenolate pharmacokinetics and pharmacodynamics in belatacept treated renal allograft recipients – a pilot study 
Background
Mycophenolic acid (MPA) is widely used as part of immunosuppressive regimens following allograft transplantation. The large pharmacokinetic (PK) and pharmacodynamic (PD) variability and narrow therapeutic range of MPA provide a potential for therapeutic drug monitoring. The objective of this pilot study was to investigate the MPA PK and PD relation in combination with belatacept (2nd generation CTLA4-Ig) or cyclosporine (CsA).
Methods
Seven renal allograft recipients were randomized to either belatacept (n = 4) or cyclosporine (n = 3) based immunosuppression. Samples for MPA PK and PD evaluations were collected predose and at 1, 2 and 13 weeks posttransplant. Plasma concentrations of MPA were determined by HPLC-UV. Activity of inosine monophosphate dehydrogenase (IMPDH) and the expressions of two IMPDH isoforms were measured in CD4+ cells by HPLC-UV and real-time reverse-transcription PCR, respectively. Subsets of T cells were characterized by flow cytometry.
Results
The MPA exposure tended to be higher among belatacept patients than in CsA patients at week 1 (P = 0.057). Further, MPA concentrations (AUC0–9 h and C0) increased with time in both groups and were higher at week 13 than at week 2 (P = 0.031, n = 6). In contrast to the postdose reductions of IMPDH activity observed early posttransplant, IMPDH activity within both treatment groups was elevated throughout the dosing interval at week 13. Transient postdose increments were also observed for IMPDH1 expression, starting at week 1. Higher MPA exposure was associated with larger elevations of IMPDH1 (r = 0.81, P = 0.023, n = 7 for MPA and IMPDH1 AUC0–9 h at week 1). The maximum IMPDH1 expression was 52 (13–177)% higher at week 13 compared to week 1 (P = 0.031, n = 6). One patient showed lower MPA exposure with time and did neither display elevations of IMPDH activity nor IMPDH1 expression. No difference was observed in T cell subsets between treatment groups.
Conclusion
The significant influence of MPA on IMPDH1 expression, possibly mediated through reduced guanine nucleotide levels, could explain the elevations of IMPDH activity within dosing intervals at week 13. The present regulation of IMPDH in CD4+ cells should be considered when interpreting measurements of IMPDH inhibition.
doi:10.1186/1479-5876-7-64
PMCID: PMC2724496  PMID: 19635156

Results 1-5 (5)