Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Stress associated gene expression in blood cells is related to outcome in radiotherapy treated head and neck cancer patients 
BMC Cancer  2012;12:426.
We previously observed that a radiotherapy-induced biochemical response in plasma was associated with favourable outcome in head and neck squamous carcinoma cancer (HNSCC) patients. The aim of the present study was to compare stress associated blood cell gene expression between two sub-groups of HNSCC patients with different biochemical responses to radiotherapy.
Out of 87 patients (histologically verified), 10 biochemical ‘responders’ having a high relative increase in plasma oxidative damage and a concomitant decrease in plasma antioxidants during radiotherapy and 10 ‘poor-responders’ were selected for gene-expression analysis and compared using gene set enrichment analysis.
There was a significant induction of stress-relevant gene-sets in the responders following radiotherapy compared to the poor-responders. The relevance of the involvement of similar stress associated gene expression for HNSCC cancer and radioresistance was verified using two publicly available data sets of 42 HNSCC cases and 14 controls (GEO GSE6791), and radiation resistant and radiation sensitive HNSCC xenografts (E-GEOD-9716).
Radiotherapy induces a systemic stress response, as revealed by induction of stress relevant gene expression in blood cells, which is associated to favourable outcome in a cohort of 87 HNSCC patients. Whether these changes in gene expression reflects a systemic effect or are biomarkers of the tumour micro-environmental status needs further study.
Trial registration
Raw data are available at ArrayExpress under accession number E-MEXP-2460.
PMCID: PMC3517770  PMID: 23009663
Radiotherapy; HNSCC; Antioxidants; Microarray; GSEA; Cancer
2.  Fish Oil Supplementation Alters the Plasma Lipidomic Profile and Increases Long-Chain PUFAs of Phospholipids and Triglycerides in Healthy Subjects 
PLoS ONE  2012;7(8):e42550.
While beneficial health effects of fish and fish oil consumption are well documented, the incorporation of n-3 polyunsaturated fatty acids in plasma lipid classes is not completely understood. The aim of this study was to investigate the effect of fish oil supplementation on the plasma lipidomic profile in healthy subjects.
Methodology/Principal Findings
In a double-blinded randomized controlled parallel-group study, healthy subjects received capsules containing either 8 g/d of fish oil (FO) (1.6 g/d EPA+DHA) (n = 16) or 8 g/d of high oleic sunflower oil (HOSO) (n = 17) for seven weeks. During the first three weeks of intervention, the subjects completed a fully controlled diet period. BMI and total serum triglycerides, total-, LDL- and HDL-cholesterol were unchanged during the intervention period. Lipidomic analyses were performed using Ultra Performance Liquid Chromatography (UPLC) coupled to electrospray ionization quadrupole time-of-flight mass spectrometry (QTOFMS), where 568 lipids were detected and 260 identified. Both t-tests and Multi-Block Partial Least Square Regression (MBPLSR) analysis were performed for analysing differences between the intervention groups. The intervention groups were well separated by the lipidomic data after three weeks of intervention. Several lipid classes such as phosphatidylcholine, phosphatidylethanolamine, lysophosphatidylcholine, sphingomyelin, phosphatidylserine, phosphatidylglycerol, and triglycerides contributed strongly to this separation. Twenty-three lipids were significantly decreased (FDR<0.05) in the FO group after three weeks compared with the HOSO group, whereas fifty-one were increased including selected phospholipids and triglycerides of long-chain polyunsaturated fatty acids. After seven weeks of intervention the two intervention groups showed similar grouping.
In healthy subjects, fish oil supplementation alters lipid metabolism and increases the proportion of phospholipids and triglycerides containing long-chain polyunsaturated fatty acids. Whether the beneficial effects of fish oil supplementation may be explained by a remodeling of the plasma lipids into phospholipids and triglycerides of long-chain polyunsaturated fatty acids needs to be further investigated.
Trial Registration NCT01034423
PMCID: PMC3429454  PMID: 22952598

Results 1-2 (2)