PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Suggestive evidence of associations between liver X receptor β polymorphisms with type 2 diabetes mellitus and obesity in three cohort studies: HUNT2 (Norway), MONICA (France) and HELENA (Europe) 
BMC Medical Genetics  2010;11:144.
Background
The liver X receptors (LXR) α and β regulate lipid and carbohydrate homeostasis and inflammation. Lxrβ-/- mice are glucose intolerant and at the same time lean. We aimed to assess the associations between single nucleotide polymorphisms (SNPs) in LXRβ and risk of type 2 diabetes mellitus (T2DM), obesity and related traits in 3 separate cohort studies.
Methods
Twenty LXRβ SNPs were identified by sequencing and genotyped in the HUNT2 adult nested case-control study for T2DM (n = 835 cases/1986 controls). Five tag-SNPs (rs17373080, rs2695121, rs56151148, rs2303044 and rs3219281), covering 99.3% of the entire common genetic variability of the LXRβ gene were identified and genotyped in the French MONICA adult study (n = 2318) and the European adolescent HELENA cross-sectional study (n = 1144). In silico and in vitro functionality studies were performed.
Results
We identified suggestive or significant associations between rs17373080 and the risk of (i) T2DM in HUNT2 (OR = 0.82, p = 0.03), (ii) obesity in MONICA (OR = 1.26, p = 0.05) and (iii) overweight/obesity in HELENA (OR = 1.59, p = 0.002). An intron 4 SNP (rs28514894, a perfect proxy for rs17373080) could potentially create binding sites for hepatic nuclear factor 4 alpha (HNF4α) and nuclear factor 1 (NF1). The C allele of rs28514894 was associated with ~1.25-fold higher human LXRβ basal promoter activity in vitro. However, no differences between alleles in terms of DNA binding and reporter gene transactivation by HNF4α or NF1 were observed.
Conclusions
Our results suggest that rs17373080 in LXRβ is associated with T2DM and obesity, maybe via altered LXRβ expression.
doi:10.1186/1471-2350-11-144
PMCID: PMC2958901  PMID: 20939869
2.  Sequencing the genome of the Atlantic salmon (Salmo salar) 
Genome Biology  2010;11(9):403.
The International Collaboration to Sequence the Atlantic Salmon Genome (ICSASG) will produce a genome sequence that identifies and physically maps all genes in the Atlantic salmon genome and acts as a reference sequence for other salmonids.
doi:10.1186/gb-2010-11-9-403
PMCID: PMC2965382  PMID: 20887641
3.  Distribution of ancestral proto-Actinopterygian chromosome arms within the genomes of 4R-derivative salmonid fishes (Rainbow trout and Atlantic salmon) 
BMC Genomics  2008;9:557.
Background
Comparative genomic studies suggest that the modern day assemblage of ray-finned fishes have descended from an ancestral grouping of fishes that possessed 12–13 linkage groups. All jawed vertebrates are postulated to have experienced two whole genome duplications (WGD) in their ancestry (2R duplication). Salmonids have experienced one additional WGD (4R duplication event) compared to most extant teleosts which underwent a further 3R WGD compared to other vertebrates. We describe the organization of the 4R chromosomal segments of the proto-ray-finned fish karyotype in Atlantic salmon and rainbow trout based upon their comparative syntenies with two model species of 3R ray-finned fishes.
Results
Evidence is presented for the retention of large whole-arm affinities between the ancestral linkage groups of the ray-finned fishes, and the 50 homeologous chromosomal segments in Atlantic salmon and rainbow trout. In the comparisons between the two salmonid species, there is also evidence for the retention of large whole-arm homeologous affinities that are associated with the retention of duplicated markers. Five of the 7 pairs of chromosomal arm regions expressing the highest level of duplicate gene expression in rainbow trout share homologous synteny to the 5 pairs of homeologs with the greatest duplicate gene expression in Atlantic salmon. These regions are derived from proto-Actinopterygian linkage groups B, C, E, J and K.
Conclusion
Two chromosome arms in Danio rerio and Oryzias latipes (descendants of the 3R duplication) can, in most instances be related to at least 4 whole or partial chromosomal arms in the salmonid species. Multiple arm assignments in the two salmonid species do not clearly support a 13 proto-linkage group model, and suggest that a 12 proto-linkage group arrangement (i.e., a separate single chromosome duplication and ancestral fusion/fissions/recombination within the putative G/H/I groupings) may have occurred in the more basal soft-rayed fishes. We also found evidence supporting the model that ancestral linkage group M underwent a single chromosome duplication following the 3R duplication. In the salmonids, the M ancestral linkage groups are localized to 5 whole arm, and 3 partial arm regions (i.e., 6 whole arm regions expected). Thus, 3 distinct ancestral linkage groups are postulated to have existed in the G/H and M lineage chromosomes in the ancestor of the salmonids.
doi:10.1186/1471-2164-9-557
PMCID: PMC2632648  PMID: 19032764

Results 1-3 (3)