PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (46)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
more »
Document Types
1.  FoxP3 Interacts with Linker Histone H1.5 to Modulate Gene Expression and Program Treg Cell Activity 
Genes and immunity  2011;12(7):559-567.
The forkhead box transcription factor FoxP3 controls the development and function of CD4+CD25+ regulatory T (Treg) cell. FoxP3 modulates gene expression in Treg cells by multiple epigenetic mechanisms that are not clearly defined. We identified FoxP3 interacting proteins in human T cells by co-IP/MS. We discovered that FoxP3 interacted with linker histone H1.5 via the leucine zipper (LZ) domain. Two independent IPEX patient-derived single residue mutations in the LZ of FoxP3 both abrogated its interaction with H1.5. Functionally, FoxP3 and H1.5 cooperatively repressed IL-2 expression in human T cells; and silencing of H1.5 expression inhibited the ability of FoxP3 to suppress IL-2 expression. We show that FoxP3 specifically enhanced H1.5 association at the IL-2 promoter, but reduce its association at the CTLA4 promoter, correlated with higher or lower histone acetylation of the respective promoters. Finally, silencing of H1.5 expression in human Treg cells impaired the Treg function to suppress target T cells. We conclude that FoxP3 interacts with H1.5 to alter its binding to target genes to modulate their expression and to program Treg function.
doi:10.1038/gene.2011.31
PMCID: PMC4329728  PMID: 21654845
2.  Staphylococcus aureus Leukotoxin ED Targets The Chemokine Receptors CXCR1 and CXCR2 to Kill Leukocytes and Promote Infection 
Cell host & microbe  2013;14(4):10.1016/j.chom.2013.09.005.
SUMMARY
The Staphylococcus aureus leukotoxin ED (LukED) is a pore-forming toxin required for the lethality associated with bacteremia in murine models. LukED targets the chemokine receptor CCR5 to kill T lymphocytes, macrophages and dendritic cells. LukED also kills CCR5-deficient cells like neutrophils, suggesting the existence of additional cellular receptors. Here we identify the chemokine receptors CXCR1 and CXCR2 as the targets of LukED on neutrophils. The LukE subunit binds neutrophils in a specific and saturable manner and this interaction is inhibited by CXCL8, the high affinity endogenous ligand of CXCR1 and CXCR2. LukED recognition of CXCR1 and CXCR2 promotes the killing of monocytes and neutrophils in vitro. LukED-mediated targeting of CXCR1/CXCR2+ cells contributes to S. aureus pathogenesis and facilitates lethality in systemically infected mice. Thus, LukED is a versatile toxin that endows S. aureus with the ability to simultaneously disarm both innate and adaptive compartments of the host immune response.
doi:10.1016/j.chom.2013.09.005
PMCID: PMC3876884  PMID: 24139401
3.  MICROFLUIDIC PLATFORM FOR REAL-TIME SIGNALING ANALYSIS OF MULTIPLE SINGLE T CELLS IN PARALLEL 
Lab on a chip  2008;8(10):1700-1712.
Deciphering the signaling pathways that govern stimulation of naïve CD4+ T helper cells by antigen-presenting cells via formation of the immunological synapse is key to a fundamental understanding of the progression of successful adaptive immune response. The study of T cell – APC interactions in vitro is challenging, however, due to the difficulty of tracking individual, nonadherent cell pairs over time. Studying single cell dynamics over time reveals rare, but critical, signaling events that might be averaged out in bulk experiments, but these less common events are undoubtedly important for an integrated understanding of a cellular response to its microenvironment. We describe a novel application of microfluidic technology that overcomes many limitations of conventional cell culture and enables the study of hundreds of passively sequestered hematopoietic cells for extended periods of time. This microfluidic cell trap device consists of 440 18 μm×18 μm×10 μm PDMS, bucket-like structures opposing the direction of flow which serve as corrals for cells as they pass through the cell trap region. Cell viability analysis revealed that more than 70% of naïve CD4+ T cells (TN), held in place using only hydrodynamic forces, subsequently remain viable for 24 hours. Cytosolic calcium transients were successfully induced in TN cells following introduction of chemical, antibody, or cellular forms of stimulation. Statistical analysis of TN cells from a single stimulation experiment reveals the power of this platform to distinguish different calcium response patterns, an ability that might be utilized to characterize T cell signaling states in a given population. Finally, we investigate in real-time contact and non-contact-based interactions between primary T cells and dendritic cells, two main participants in the formation of the immunological synapse. Utilizing the microfluidic traps in a daisy-chain configuration allowed us to observe calcium transients in TN cells exposed only to media conditioned by secretions of lipopolysaccharide-matured dendritic cells, an event which is easily missed in conventional cell culture where large media-to-cell ratios dilute cellular products. Further investigation into this intercellular signaling event indicated that LPS-matured dendritic cells, in the absence of antigenic stimulation, secrete chemical signals that induce calcium transients in TN cells. While the stimulating factor(s) produced by the mature dendritic cells remains to be identified, this report illustrates the utility of these microfluidic cell traps for analyzing arrays of individual suspension cells over time and probing both contact-based and inter-cellular signaling events between one or more cell populations.
doi:10.1039/b719799c
PMCID: PMC4160168  PMID: 18813394
4.  Pro-inflammatory human Th17 cells selectively express P-glycoprotein and are refractory to glucocorticoids 
Inflammatory T helper 17 cells in humans are distinguished by selective expression of MDR1 and are enriched in the gut of patients with Crohn’s disease.
IL-17A–expressing CD4+ T cells (Th17 cells) are generally regarded as key effectors of autoimmune inflammation. However, not all Th17 cells are pro-inflammatory. Pathogenic Th17 cells that induce autoimmunity in mice are distinguished from nonpathogenic Th17 cells by a unique transcriptional signature, including high Il23r expression, and these cells require Il23r for their inflammatory function. In contrast, defining features of human pro-inflammatory Th17 cells are unknown. We show that pro-inflammatory human Th17 cells are restricted to a subset of CCR6+CXCR3hiCCR4loCCR10−CD161+ cells that transiently express c-Kit and stably express P-glycoprotein (P-gp)/multi-drug resistance type 1 (MDR1). In contrast to MDR1− Th1 or Th17 cells, MDR1+ Th17 cells produce both Th17 (IL-17A, IL-17F, and IL-22) and Th1 (IFN-γ) cytokines upon TCR stimulation and do not express IL-10 or other anti-inflammatory molecules. These cells also display a transcriptional signature akin to pathogenic mouse Th17 cells and show heightened functional responses to IL-23 stimulation. In vivo, MDR1+ Th17 cells are enriched and activated in the gut of Crohn’s disease patients. Furthermore, MDR1+ Th17 cells are refractory to several glucocorticoids used to treat clinical autoimmune disease. Thus, MDR1+ Th17 cells may be important mediators of chronic inflammation, particularly in clinical settings of steroid resistant inflammatory disease.
doi:10.1084/jem.20130301
PMCID: PMC3892977  PMID: 24395888
5.  Regulation of the expression of GARP/latent-TGF-β1 complexes on mouse T cells and their role in Regulatory T Cell and Th17 differentiation1 
GARP/LRRC32 has previously been defined as a marker of activated human regulatory T-cells (Tregs) that is responsible for surface localization of latent TGF-β1. We find that GARP and latent TGF-β1 are also found on mouse Tregs activated via TCR stimulation, but in contrast to human Tregs, GARP is also expressed at a low level on resting Tregs. The expression of GARP can be upregulated on mouse Tregs by IL-2 or IL-4 exposure in the absence of TCR signaling. GARP is expressed at a low level on Tregs within the thymus and Treg precursors from the thymus concomitantly express GARP and Foxp3 upon exposure to IL-2. The expression of GARP is independent of TGF-β1 and TGF-β1 loading into GARP and is independent of furin-mediated processing of pro-TGF-β1 to latent TGF-β1. Specific deletion of GARP in CD4+ T cells results in lack of expression of latent-TGF-β1 on activated Tregs. GARP-deficient Tregs develop normally, are present in normal numbers in peripheral tissues, and are fully competent suppressors of the activation of T conventional cells in vitro. Activated Tregs expressing GARP/latent-TGF-β1 complexes are potent inducers of Th17 differentiation in the presence of exogenous IL-6 and inducers of Treg in the presence of IL-2. Induction of both Th17 producing cells and Treg is preferentially induced by Tregs expressing the latent-TGF-β1/GARP complex on their cell surface rather than by secreted latent-TGF-β1.
doi:10.4049/jimmunol.1300199
PMCID: PMC3668701  PMID: 23645881
6.  GARP-TGFβ complexes negatively regulate Treg cell development and maintenance of peripheral CD4+ T cells in vivo 
The role of surface bound TGFβ on regulatory T cells (Tregs) and the mechanisms mediating its functions are not well defined. We recently identified a cell surface molecule called GARP, which is expressed specifically on activated Tregs and was found to bind latent-TGFβ and mediate a portion of Treg suppressive activity in vitro. Here, we address the role of GARP in regulating Treg and conventional T cell development and immune suppression in vivo using a transgenic mouse expressing GARP on all T cells. We found that, despite forced expression of GARP on all T cells, stimulation through the T cell receptor (TCR) was required for efficient localization of GARP to the cell surface. In addition, IL-2 signals enhanced GARP cell surface expression specifically on Tregs. GARP-transgenic CD4+ T cells and Tregs, especially those expressing higher levels of GARP, were significantly reduced in the periphery. Mature Tregs, but not conventional CD4+ T cells, were also reduced in the thymus. CD4+ T cell reduction was more pronounced within the effector/memory subset, especially as the mouse aged. Additionally, GARP overexpressing CD4+ T cells stimulated through the TCR displayed reduced proliferative capacity, which was restored by inhibiting TGFβ signaling. Furthermore, inhibiting TGFβ signals greatly enhanced surface expression of GARP on Tregs and blocked the induction of FoxP3 in activated CD4+ T cells overexpressing GARP. These findings suggest a role for GARP in natural and induced Treg development through activation of bound latent TGFβ and signaling, which negatively regulates GARP expression on Tregs.
doi:10.4049/jimmunol.1300065
PMCID: PMC3653571  PMID: 23576681
7.  Topical TLR7 agonist imiquimod can induce immune-mediated rejection of skin metastases in patients with breast cancer 
Purpose
Skin metastases of breast cancer remain a therapeutic challenge. Toll-like receptor 7 agonist imiquimod is an immune response modifier and can induce immune-mediated rejection of primary skin malignancies when topically applied. Here we tested the hypothesis that topical imiquimod stimulates local anti-tumor immunity and induces the regression of breast cancer skin metastases.
Methods
A prospective clinical trial was designed to evaluate the local tumor response rate of breast cancer skin metastases treated with topical imiquimod, applied 5 days/week for 8 weeks. Safety and immunological correlates were secondary objectives.
Results
Ten patients were enrolled and completed the study. Imiquimod treatment was well tolerated, with only grade 1-2 transient local and systemic side effects consistent with imiquimod's immunomodulatory effects. Two patients achieved a partial response (20%; 95% CI 3% - 56%). Responders showed histological tumor regression with evidence of an immune-mediated response, demonstrated by changes in the tumor lymphocytic infiltrate and locally produced cytokines.
Conclusion
Topical imiquimod is a beneficial treatment modality for breast cancer metastatic to skin/chest wall and is well tolerated. Importantly, imiquimod can promote a pro-immunogenic tumor microenvironment in breast cancer. Preclinical data generated by our group suggest even superior results with a combination of imiquimod and ionizing radiation and we are currently testing in patients whether the combination can further improve anti-tumor immune and clinical responses.
doi:10.1158/1078-0432.CCR-12-1149
PMCID: PMC3580198  PMID: 22767669
imiquimod; toll-like receptor; breast cancer; chest wall recurrence; skin metastases
8.  The Metalloprotease ADAM12 Regulates the Effector Function of Human Th17 Cells 
PLoS ONE  2013;8(11):e81146.
A key modulator of immune homeostasis, TGFβ has an important role in the differentiation of regulatory T cells (Tregs) and IL-17-secreting T cells (Th17). How TGFβ regulates these functionally opposing T cell subsets is not well understood. We determined that an ADAM family metalloprotease called ADAM12 is specifically and highly expressed in both Tregs and CCR6+ Th17 cells. ADAM12 is induced in vitro upon differentiation of naïve T cells to Th17 cells or IL-17-secreting Tregs. Remarkably, silencing ADAM12 expression in CCR6+ memory T cells enhances the production of Th17 cytokines, similar to suppressing TGFβ signaling. Further, ADAM12 knockdown in naïve human T cells polarized towards Th17/Treg cells, or ectopically expressing RORC, greatly enhances IL-17-secreting cell differentiation, more potently then inhibiting TGFβ signals. Together, our findings reveal a novel regulatory role for ADAM12 in Th17 cell differentiation or function and may have implications in regulating their aberrant responses during immune pathologies.
doi:10.1371/journal.pone.0081146
PMCID: PMC3867213  PMID: 24363794
9.  Correction: Probing the Effector and Suppressive Functions of Human T Cell Subsets Using Antigen-Specific Engineered T Cell Receptors 
PLoS ONE  2013;8(10):10.1371/annotation/cbc71d72-f1a2-45de-9d4a-cb0c8dc076b5.
doi:10.1371/annotation/cbc71d72-f1a2-45de-9d4a-cb0c8dc076b5
PMCID: PMC3815353
10.  The Biology of FoxP3: A Key Player in Immune Suppression during Infections, Autoimmune Diseases and Cancer 
The Transcription factor FoxP3 belongs to the forkhead/winged-helix family of transcriptional regulators and shares general structural features with other FoxP family members. FoxP3 functions as a master of transcription for the development of regulatory T-cells (Treg cells) both in humans and in mice. Natural genetic mutations of FoxP3 that disrupt its function in humans result in an autoimmune syndrome called Immune Polyendocrinopathy, Enteropathy, X-linked (IPEX) and in mice, its deletion causes the Scurfy phenotype, with similar pathology. The finding that FoxP3 is required for the development and function of Tregs has led to an explosion of research in determining its regulation and function in the immune system. Understanding the biological properties of FoxP3 has a wide range of implications for immune tolerance, autoimmune disorders, inflammation and immune response to infectious diseases and cancer.
PMCID: PMC3732823  PMID: 20429415
11.  CCR5 is a receptor for Staphylococcus aureus leukotoxin ED 
Nature  2012;493(7430):51-55.
Pore-forming toxins are critical virulence factors for many bacterial pathogens and are central to Staphylococcus aureus-mediated killing of host cells. S. aureus encodes pore-forming bi-component leukotoxins that are toxic toward neutrophils, but also specifically target other immune cells. Despite decades since the first description of Staphylococcal leukocidal activity, the host factors responsible for the selectivity of leukotoxins toward different immune cells remain unknown. Here we identified the HIV co-receptor, CCR5, as a cellular determinant required for cytotoxic targeting of subsets of myeloid cells and T lymphocytes by the S. aureus leukotoxin ED (LukED). We further demonstrate that LukED-dependent cell killing is blocked by CCR5 receptor antagonists, including the HIV drug maraviroc. Remarkably, CCR5-deficient mice are largely resistant to lethal S. aureus infection, highlighting the importance of CCR5 targeting in S. aureus pathogenesis. Thus, depletion of CCR5+ leukocytes by LukED suggests a novel S. aureus immune evasion mechanism that can be therapeutically targeted.
doi:10.1038/nature11724
PMCID: PMC3536884  PMID: 23235831
12.  In Vivo Depletion of CD11c+ Dendritic Cells Abrogates Priming of CD8+ T Cells by Exogenous Cell-Associated Antigens 
Immunity  2002;17(2):211-220.
Summary
Cytotoxic T lymphocytes (CTL) respond to antigenic peptides presented on MHC class I molecules. On most cells, these peptides are exclusively of endogenous, cytosolic origin. Bone marrow-derived antigen-presenting cells, however, harbor a unique pathway for MHC I presentation of exogenous antigens. This mechanism permits cross-presentation of pathogen-infected cells and the priming of CTL responses against intracellular microbial infections. Here, we report a novel diphtheria toxin-based system that allows the inducible, short-term ablation of dendritic cells (DC) in vivo. We show that in vivo DC are required to cross-prime CTL precursors. Our results thus define a unique in vivo role of DC, i.e., the sensitization of the immune system for cell-associated antigens. DC-depleted mice fail to mount CTL responses to infection with the intracellular bacterium Listeria monocytogenes and the rodent malaria parasite Plasmodium yoelii.
PMCID: PMC3689299  PMID: 12196292
13.  Probing the Effector and Suppressive Functions of Human T Cell Subsets Using Antigen-Specific Engineered T Cell Receptors 
PLoS ONE  2013;8(2):e56302.
Activation of T cells through the engagement of the T cell receptors (TCRs) with specific peptide-MHC complexes on antigen presenting cells (APCs) is the major determinant for their proliferation, differentiation and display of effector functions. To assess the role of quantity and quality of peptide-MHC presentation in eliciting T cell activation and suppression functions, we genetically engineered human T cells with two TCRs that recognize HLA-A*0201-restricted peptides derived from either HIV or melanoma antigens. The engineered-TCRs are highly functional in both CD8+ and CD4+ T cells as assessed by the upregulation of activation markers, induction of cytokine secretion and cytotoxicity. We further demonstrated that engineered-TCRs can also be expressed on naïve human T cells, which are stimulated through APCs presenting specific peptides to induce T cell proliferation and acquire effector functions. Furthermore, regulatory T cells (Tregs) ectopically expressing the engineered-TCRs are activated in an antigen-specific fashion and suppress T cell proliferation. In this system, the inhibitory activity of peptide-stimulated Tregs require the presence of dendritic cells (DCs) in the culture, either as presenters or as bystander cells, pointing to a critical role for DCs in suppression by Tregs. In conclusion, the engineered-TCR system reported here advances our ability to understand the differentiation pathways of naïve T cells into antigen-specific effector cells and the role of antigen-specific signaling in Treg-mediated immune suppression.
doi:10.1371/journal.pone.0056302
PMCID: PMC3577812  PMID: 23437112
14.  Human Immunodeficiency Virus Type 1 Capsid Mutation N74D Alters Cyclophilin A Dependence and Impairs Macrophage Infection 
Journal of Virology  2012;86(8):4708-4714.
The antiviral factor CPSF6-358 interferes with the nuclear entry of human immunodeficiency virus type 1 (HIV-1). HIV-1 acquires resistance to CPSF6-358 through the N74D mutation of the capsid (CA), which alters its nuclear entry pathway. Here we show that compared to wild-type (WT) HIV-1, N74D HIV-1 is more sensitive to cyclosporine, has increased sensitivity to nevirapine, and is impaired in macrophage infection prior to reverse transcription. These phenotypes suggest a difference in the N74D reverse transcription complex that manifests early after infection and prior to interaction with the nuclear pore. Overall, our data indicate that N74D HIV-1 replication in transformed cells requires cyclophilin A but is dependent on other interactions in macrophages.
doi:10.1128/JVI.05887-11
PMCID: PMC3318671  PMID: 22301145
15.  Characterization of a new cytotoxin that contributes to Staphylococcus aureus pathogenesis 
Molecular Microbiology  2010;79(3):814-825.
SUMMARY
Staphylococcus aureus is an important pathogen that continues to be a significant global health threat due to the prevalence of methicillin resistant S. aureus strains (MRSA). The pathogenesis of this organism is partly attributed to the production of a large repertoire of cytotoxins that target and kill innate immune cells, which provide the first line of defense against S. aureus infection. Here we demonstrate that leukocidin A/B (LukAB) is required and sufficient for the ability of S. aureus, including MRSA, to kill human neutrophils, macrophages and dendritic cells. LukAB targets the plasma membrane of host cells resulting in cellular swelling and subsequent cell death. We found that S. aureus lacking lukAB are severely impaired in their ability to kill phagocytes during bacteria-phagocyte interaction, which in turn renders the lukAB-negative staphylococci more susceptible to killing by neutrophils. Notably, we show that lukAB is expressed in vivo within abscesses in a murine infection model and that it contributes significantly to pathogenesis of MRSA in an animal hosts. Collectively, these results extend our understanding of how S. aureus avoids phagocyte-mediated clearance, and underscore LukAB as an important factor that contributes to staphylococcal pathogenesis.
doi:10.1111/j.1365-2958.2010.07490.x
PMCID: PMC3312031  PMID: 21255120
MRSA; Staphylococcus aureus; neutrophils; pathogenesis; leukotoxins
16.  Revisiting Immune Exhaustion During HIV Infection 
Current HIV/AIDS reports  2011;8(1):4-11.
Chronic immune activation is a hallmark of HIV infection, yet the underlying triggers of immune activation remain unclear. Persistent antigenic stimulation during HIV infection may also lead to immune exhaustion, a phenomenon in which effector T cells become dysfunctional and lose effector functions and proliferative capacity. Several markers of immune exhaustion, such as PD-1, LAG-3, Tim-3, and CTLA-4, which are also negative regulators of immune activation, are preferentially upregulated on T cells during HIV infection. It is not yet clear whether accumulation of T cells expressing activation inhibitory molecules is a consequence of general immune or chronic HIV-specific immune activation. Importantly, however, in vitro blockade of PD-1 and Tim-3 restores HIV-specific T-cell responses, indicating potential for immunotherapies. In this review we discuss the evolution of our understanding of immune exhaustion during HIV infection, highlighting novel markers and potential therapeutic targets.
doi:10.1007/s11904-010-0066-0
PMCID: PMC3144861  PMID: 21188556
T-cell exhaustion; Immune activation; PD-1; Tim-3; HIV; LAG-3; SIV
17.  Cytokine signals through PI-3 kinase pathway modulate Th17 cytokine production by CCR6+ human memory T cells 
The Journal of Experimental Medicine  2011;208(9):1875-1887.
PI-3K–mediated repression of FOXO1 and KLF2 promotes proinflammatory cytokine expression by lineage-committed human CCR6+ Th17/Th22 memory cells.
Human memory T cells (TM cells) that produce IL-17 or IL-22 are currently defined as Th17 or Th22 cells, respectively. These T cell lineages are almost exclusively CCR6+ and are important mediators of chronic inflammation and autoimmunity. However, little is known about the mechanisms controlling IL-17/IL-22 expression in memory Th17/Th22 subsets. We show that common γ chain (γc)–using cytokines, namely IL-2, IL-7, and IL-15, potently induce Th17-signature cytokine expression (Il17a, Il17f, Il22, and Il26) in CCR6+, but not CCR6−, TM cells, even in CCR6+ cells lacking IL-17 expression ex vivo. Inhibition of phosphoinositide 3-kinase (PI-3K) or Akt signaling selectively prevents Th17 cytokine induction by γc-cytokines, as does ectopic expression of the transcription factors FOXO1 or KLF2, which are repressed by PI-3K signaling. These results indicate that Th17 cytokines are tuned by PI-3K signaling in CCR6+ TM cells, which may contribute to chronic or autoimmune inflammation. Furthermore, these findings suggest that ex vivo analysis of IL-17 expression may greatly underestimate the frequency and pathogenic potential of the human Th17 compartment.
doi:10.1084/jem.20102516
PMCID: PMC3171088  PMID: 21825017
18.  Human Natural Killer T Cells Infiltrate into the Skin at Elicitation Sites of Allergic Contact Dermatitis 
The purpose of this study is to identify invariant natural killer T cells (NKT cells) in cellular infiltrate of human allergic contact dermatitis (ACD) skin challenge sites. Skin biopsy specimens were taken from positive patch test reactions from 10 different patients (9 different allergens) and studied by immunochemistry, real-time PCR, nested PCR, and in situ hybridization to identify NKT cells and the cytokines associated with this cell type. Invariant NKT cells were identified in all the 10 skin biopsy specimens studied, ranging from 1.72 to 33% of the cellular infiltrate. These NKT cells were activated in all cases, as they expressed cytokine transcripts for IFN-γ and IL-4. Invariant NKT cells are present in ACD, regardless of the allergen that triggers the reaction, and are in an activated state. We conclude that innate immunity plays a role in late phases of type IV hypersensitivity reactions and may be responding to self-lipids released during allergic inflammation. These data complement the previous work by other investigators that suggest that NKT cells are important in the early cellular response during primary immune responses to allergens. Herein, it is demonstrated that NKT cells are constantly present during the late elicitation phase of human type IV hypersensitivity reactions.
doi:10.1038/sj.jid.5701199
PMCID: PMC3125127  PMID: 18079745
19.  Th17 cells and HIV infection 
Current opinion in HIV and AIDS  2010;5(2):146-150.
Purpose of review
This review summarizes the recent literature about the potential perturbation and role of Th17 cells in HIV pathogenesis. We discuss the recent findings on Th17 deficiency in HIV/SIV infection and how this may impact the mucosal host defenses, potentially contributing to chronic immune activation.
Recent findings
Th17 cells have been implicated in host defense against a variety of pathogens and are involved in the pathogenesis of autoimmune diseases. Recently Th17 cells were shown to be perturbed during HIV infection in humans and SIV infection in non-human primates. Th17 cells were found to be infected in vitro by HIV and SIV and are significantly depleted in the gastrointestinal (GI) tract of HIV-infected individuals. In monkeys, Th17 cells are only depleted in the pathogenic SIV infection of rhesus macaques, which correlates with the progression to AIDS in these primates, while they remain intact in the non-pathogenic SIV infection of African Green Monkeys or Sooty Mangabeys.
Summary
Th17 cells appear to be perturbed during HIV and SIV infection. This finding could have important implications in understanding the disruption of mucosal defenses in the GI tract and potentially in predicting opportunistic infections during the course of HIV disease.
doi:10.1097/COH.0b013e32833647a8
PMCID: PMC3115760  PMID: 20543592
Th17; HIV; SIV; immune activation
20.  Flexible Use of Nuclear Import Pathways by HIV-1 
Cell host & microbe  2010;7(3):221-233.
Summary
The cellular and viral determinants required for HIV-1 infection of nondividing cells have been a subject of intense scrutiny. Here we identify the 68 kDa subunit of cleavage factor Im, CPSF6, as an inhibitor of HIV-1 infection. When enriched in the cytoplasm by high level expression or mutation, CPSF6 prevents nuclear entry of the virus. Similar to TRIM5 and Fv1 type restrictions, CPSF6 targets the viral capsid (CA). N74D mutation of the HIV-1 CA leads to a loss of interaction with CPSF6 and evasion of the nuclear import restriction. Interestingly, N74D mutation of CA changes HIV-1 nucleoporin (NUP) requirements. Whereas wild-type HIV-1 requires NUP153, N74D HIV-1 mimics the NUP requirements of feline immunodeficiency virus (FIV) and is more sensitive to NUP155 depletion. These findings reveal a remarkable flexibility in HIV-1 nuclear transport and highlight a single residue in CA as essential in regulating interactions with NUPs.
doi:10.1016/j.chom.2010.02.007
PMCID: PMC2841689  PMID: 20227665
21.  Human Th17 cells are susceptible to HIV and are perturbed during infection 
The Journal of infectious diseases  2010;201(6):843-854.
Background
Identification of the Th17 T cell subset as important mediators of host defense and pathology, prompted us to determine their susceptibility to HIV infection.
Methods and Results
We found that a sizeable portion of Th17 cells express HIV co-receptor CCR5 and produce very low levels of CCR5 ligands MIP-1α and MIP-1β. Accordingly, CCR5+ Th17 cells were efficiently infected with CCR5-tropic HIV and were depleted during viral replication in vitro. Remarkably, HIV+ individuals under treatment showed significantly reduced Th17 cells compared to HIV− subjects, regardless of their viral loads or CD4 numbers, whereas treatment naïve subjects had normal levels. However, there was a preferential reduction in CCR5+ T cells that were also CCR6+, which is expressed on all Th17 cells, as compared to CCR6−CCR5+ cells, in both treated and untreated HIV+ subjects. This observation suggests preferential targeting of CCR6+CCR5+ Th17 cells by CCR5-tropic viruses in vivo. Th17 cell levels also inversely correlated with activated CD4+ T cells in HIV+ individuals under treatment.
Conclusion
Our findings suggest a complex perturbation of Th17 subsets during the course of HIV-disease potentially through both direct viral infection and virus indirect mechanisms such as immune activation.
doi:10.1086/651021
PMCID: PMC2849315  PMID: 20144043
Th17; IL-17; IFNγ; MIP-1α; MIP-1β; CCR5; CCR6; CD38; HIV
22.  A cryptic sensor for HIV-1 activates antiviral innate immunity in dendritic cells 
Nature  2010;467(7312):214-217.
Dendritic cells (DC) serve a key function in host defense, linking innate detection of microbes to the activation of pathogen-specific adaptive immune responses(1,2). Whether there is cell-intrinsic recognition of HIV-1 by host innate pattern-recognition receptors and subsequent coupling to antiviral T cell responses is not yet known(3). DC are largely resistant to infection with HIV-1(4), but facilitate infection of co-cultured T-helper cells through a process of trans-enhancement(5,6). We show here that, when DC resistance to infection is circumvented(7,8), HIV-1 induces DC maturation, an antiviral type I interferon response and activation of T cells. This innate response is dependent on the interaction of newly-synthesized HIV-1 capsid (CA) with cellular cyclophilin A (CypA) and the subsequent activation of the transcription factor IRF3. Because the peptidyl-prolyl isomerase CypA also interacts with CA to promote HIV-1 infectivity, our results suggest that CA conformation has evolved under opposing selective pressures for infectivity versus furtiveness. Thus, a cell intrinsic sensor for HIV-1 exists in DC and mediates an antiviral immune response, but it is not typically engaged due to absence of DC infection. The virulence of HIV-1 may be related to evasion of this response, whose manipulation may be necessary to generate an effective HIV-1 vaccine.
doi:10.1038/nature09337
PMCID: PMC3051279  PMID: 20829794
23.  CCR5 Expression Levels Influence NFAT Translocation, IL-2 Production, and Subsequent Signaling Events during T Lymphocyte Activation1 
Ligands of CCR5, the major coreceptor of HIV-1, costimulate T lymphocyte activation. However, the full impact of CCR5 expression on T cell responses remains unknown. Here, we show that compared with CCR5+/+, T cells from CCR5−/− mice secrete lower amounts of IL-2, and a similar phenotype is observed in humans who lack CCR5 expression (CCR5-Δ32/Δ32 homozygotes) as well as after Ab-mediated blockade of CCR5 in human T cells genetically intact for CCR5 expression. Conversely, overexpression of CCR5 in human T cells results in enhanced IL-2 production. CCR5 surface levels correlate positively with IL-2 protein and mRNA abundance, suggesting that CCR5 affects IL-2 gene regulation. Signaling via CCR5 resulted in NFAT transactivation in T cells that was blocked by Abs against CCR5 agonists, suggesting a link between CCR5 and downstream pathways that influence IL-2 expression. Furthermore, murine T cells lacking CCR5 had reduced levels of intranuclear NFAT following activation. Accordingly, CCR5 expression also promoted IL-2-dependent events, including CD25 expression, STAT5 phosphorylation, and T cell proliferation. We therefore suggest that by influencing a NFAT-mediated pathway that regulates IL-2 production and IL-2-dependent events, CCR5 may play a critical role in T cell responses. In accord with our prior inferences from genetic-epidemiologic studies, such CCR5-dependent responses might constitute a viral entry-independent mechanism by which CCR5 may influence HIV-AIDS pathogenesis.
PMCID: PMC2937277  PMID: 19109148
24.  Perturbation of the P-Body Component Mov10 Inhibits HIV-1 Infectivity 
PLoS ONE  2010;5(2):e9081.
Exogenous retroviruses are obligate cellular parasites that co-opt a number of host proteins and functions to enable their replication and spread. Several host factors that restrict HIV and other retroviral infections have also recently been described. Here we demonstrate that Mov10, a protein associated with P-bodies that has a putative RNA-helicase domain, when overexpressed in cells can inhibit the production of infectious retroviruses. Interestingly, reducing the endogenous Mov10 levels in virus-producing cells through siRNA treatment also modestly suppresses HIV infectivity. The actions of Mov10 are not limited to HIV, however, as ectopic expression of Mov10 restricts the production of other lentiviruses as well as the gammaretrovirus, murine leukemia virus. We found that HIV produced in the presence of high levels of Mov10 is restricted at the pre-reverse transcription stage in target cells. Finally, we show that either helicase mutation or truncation of the C-terminal half of Mov10, where a putative RNA-helicase domain is located, maintained most of its HIV inhibition; whereas removing the N-terminal half of Mov10 completely abolished its activity on HIV. Together these results suggest that Mov10 could be required during the lentiviral lifecycle and that its perturbation disrupts generation of infectious viral particles. Because Mov10 is implicated as part of the P-body complex, these findings point to the potential role of cytoplasmic RNA processing machinery in infectious retroviral production.
doi:10.1371/journal.pone.0009081
PMCID: PMC2816699  PMID: 20140200
25.  Expression and Function of TNF and IL-1 Receptors on Human Regulatory T Cells 
PLoS ONE  2010;5(1):e8639.
Regulatory T cells (Tregs) suppress immune activation and are critical in preventing autoimmune diseases. While the ability of Tregs to inhibit proliferation of other T cells is well established, it is not yet clear whether Tregs also modulate inflammatory cytokines during an immune response. Here, we show that the expression of inflammatory cytokine receptors IL-1R1 and TNFR2 were higher on resting mature Tregs compared to naïve or memory T cells. While upon activation through the T cell receptor (TCR), expression of IL-1R1 and TNFR2 were upregulated on all T cell subsets, IL-1R1 maintained significantly higher expression on activated Tregs as compared to other T cell subsets. The decoy receptor for IL-1 (IL-1R2) was not expressed by any of the resting T cells but was rapidly upregulated and preferentially expressed upon TCR-stimulation on Tregs. In addition, we found that Tregs also expressed high levels of mRNA for IL-1 antagonist, IL-1RA. TCR-stimulation of naïve T cells in the presence of TGFβ, which induces FOXP3 expression, however did not result in upregulation of IL-1R1 or IL-1R2. In addition, ectopic expression of FOXP3 in non-Tregs, while causing significant upregulation of IL-1R1 and IL-1R2, did not achieve the levels seen in bona fide Tregs. We also determined that resting human Tregs expressing IL-1R1 did not have higher suppressive capacity compared to IL-1R1- Tregs, suggesting that IL-1R1 does not discriminate suppressive resting Tregs in healthy individuals. Functionally, activated human Tregs displayed a capacity to neutralize IL-1β, which suggests a physiological significance for the expression of IL-1 decoy receptor on Tregs. In conclusion, our findings that human Tregs preferentially express receptors for TNF and IL-1 suggest a potential function in sensing and dampening local inflammation.
doi:10.1371/journal.pone.0008639
PMCID: PMC2799662  PMID: 20066156

Results 1-25 (46)