Search tips
Search criteria

Results 1-9 (9)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Heat shock protein 60: an endogenous inducer of dopaminergic cell death in Parkinson disease 
Increasing evidence suggests that inflammation associated with microglial cell activation in the substantia nigra (SN) of patients with Parkinson disease (PD) is not only a consequence of neuronal degeneration, but may actively sustain dopaminergic (DA) cell loss over time. We aimed to study whether the intracellular chaperone heat shock protein 60 (Hsp60) could serve as a signal of CNS injury for activation of microglial cells.
Hsp60 mRNA expression in the mesencephalon and the striatum of C57/BL6 mice treated with MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) and the Hsp60/TH mRNA ratios in the SN of PD patients and aged-matched subjects were measured. To further investigate a possible link between the neuronal Hsp60 response and PD-related cellular stress, Hsp60 immunoblot analysis and quantification in cell lysates from SH-SY5Y after treatment with 100 μM MPP+ (1-methyl-4-phenylpyridinium) at different time points (6, 12, 24 and 48 hours) compared to control cells were performed. Additional MTT and LDH assay were used. We next addressed the question as to whether Hsp60 influences the survival of TH+ neurons in mesencephalic neuron-glia cultures treated either with MPP+ (1 μM), hHsp60 (10 μg/ml) or a combination of both. Finally, we measured IL-1β, IL-6, TNF-α and NO-release by ELISA in primary microglial cell cultures following treatment with different hHsp60 preparations. Control cultures were exposed to LPS.
In the mesencephalon and striatum of mice treated with MPTP and also in the SN of PD patients, we found that Hsp60 mRNA was up-regulated. MPP+, the active metabolite of MPTP, also caused an increased expression and release of Hsp60 in the human dopaminergic cell line SH-SY5Y. Interestingly, in addition to being toxic to DA neurons in primary mesencephalic cultures, exogenous Hsp60 aggravated the effects of MPP+. Yet, although we demonstrated that Hsp60 specifically binds to microglial cells, it failed to stimulate the production of pro-inflammatory cytokines or NO by these cells.
Overall, our data suggest that Hsp60 is likely to participate in DA cell death in PD but via a mechanism unrelated to cytokine release.
PMCID: PMC4018945  PMID: 24886419
PD; Neuroinflammation; Hsp60; Neurodegeneration; Microglia; Innate immunity
2.  In Vitro and In Vivo Infectious Potential of Coxiella burnetii: A Study on Belgian Livestock Isolates 
PLoS ONE  2013;8(6):e67622.
Q-fever is a zoonosis caused by the gram-negative obligate intracellular pathogen Coxiella burnetii. Since its discovery, and particularly following the recent outbreaks in the Netherlands, C. burnetii appeared as a clear public health concern. In the present study, the infectious potential displayed by goat and cattle isolates of C. burnetii was compared to a reference strain (Nine Mile) using both in vitro (human HeLa and bovine macrophage cells) and in vivo (BALB/c mice) models. The isolates had distant genomic profiles with one - the goat isolate - being identical to the predominant strain circulating in the Netherlands during the 2007–2010 outbreaks. Infective doses were established with ethidium monoazide-PCR for the first time here applied to C. burnetii. This method allowed for the preparation of reproducible and characterized inocula thanks to its capacity to discriminate between live and dead cells. Globally, the proliferative capacity of the Nine Mile strain in cell lines and mice was higher compared to the newly isolated field strains. In vitro, the bovine C. burnetii isolate multiplied faster in a bovine macrophage cell line, an observation tentatively explained by the preferential specificity of this strain for allogeneic host cells. In the BALB/c mouse model, however, the goat and bovine isolates multiplied at about the same rate indicating no peculiar hypervirulent behavior in this animal model.
PMCID: PMC3695903  PMID: 23840751
3.  Bee Venom and Its Component Apamin as Neuroprotective Agents in a Parkinson Disease Mouse Model 
PLoS ONE  2013;8(4):e61700.
Bee venom has recently been suggested to possess beneficial effects in the treatment of Parkinson disease (PD). For instance, it has been observed that bilateral acupoint stimulation of lower hind limbs with bee venom was protective in the acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. In particular, a specific component of bee venom, apamin, has previously been shown to have protective effects on dopaminergic neurons in vitro. However, no information regarding a potential protective action of apamin in animal models of PD is available to date. The specific goals of the present study were to (i) establish that the protective effect of bee venom for dopaminergic neurons is not restricted to acupoint stimulation, but can also be observed using a more conventional mode of administration and to (ii) demonstrate that apamin can mimic the protective effects of a bee venom treatment on dopaminergic neurons. Using the chronic mouse model of MPTP/probenecid, we show that bee venom provides sustained protection in an animal model that mimics the chronic degenerative process of PD. Apamin, however, reproduced these protective effects only partially, suggesting that other components of bee venom enhance the protective action of the peptide.
PMCID: PMC3630120  PMID: 23637888
4.  Toll like receptor 4 mediates cell death in a mouse MPTP model of Parkinson disease 
Scientific Reports  2013;3:1393.
In mammalians, toll-like receptors (TLR) signal-transduction pathways induce the expression of a variety of immune-response genes, including inflammatory cytokines. It is therefore plausible to assume that TLRs are mediators in glial cells triggering the release of cytokines that ultimately kill DA neurons in the substantia nigra in Parkinson disease (PD). Accordingly, recent data indicate that TLR4 is up-regulated by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment in a mouse model of PD. Here, we wished to evaluate the role of TLR4 in the acute mouse MPTP model of PD: TLR4-deficient mice and wild-type littermates control mice were used for the acute administration way of MPTP or a corresponding volume of saline. We demonstrate that TLR4-deficient mice are less vulnerable to MPTP intoxication than wild-type mice and display a decreased number of Iba1+ and MHC II+ activated microglial cells after MPTP application, suggesting that the TLR4 pathway is involved in experimental PD.
PMCID: PMC3589722  PMID: 23462811
5.  Effect of omp10 or omp19 Deletion on Brucella abortus Outer Membrane Properties and Virulence in Mice  
Infection and Immunity  2002;70(10):5540-5546.
The distinctive properties of Brucella outer membrane have been considered to be critical for Brucella sp. virulence. Among the outer membrane molecules possibly related to these properties, Omp10 and Omp19 are immunoreactive outer membrane lipoproteins. Moreover, these proteins of Brucella could constitute a new family of outer membrane proteins specifically encountered in the family Rhizobiaceae. We evaluated the impact of omp10 or omp19 deletion on Brucella abortus outer membrane properties and virulence in mice. The omp10 mutant was dramatically attenuated for survival in mice and was defective for growth in minimal medium but was not impaired in intracellular growth in vitro, nor does it display clear modification of the outer membrane properties. Significantly fewer brucellae were recovered from the spleens of mice infected with the omp19 mutant than from those of mice infected with the parent strain at 4 and 8 weeks postinfection. The omp19 mutant exhibited an increase in sensitivity to the polycation polymyxin B and to sodium deoxycholate. These results indicate that inactivation of the omp19 gene alters the outer membrane properties of B. abortus.
PMCID: PMC128365  PMID: 12228280
6.  Induction of Immune Response in BALB/c Mice with a DNA Vaccine Encoding Bacterioferritin or P39 of Brucella spp. 
Infection and Immunity  2001;69(10):6264-6270.
In this study, we evaluated the ability of DNA vaccines encoding the bacterioferritin (BFR) or P39 proteins of Brucella spp. to induce cellular and humoral immune responses and to protect BALB/c mice against a challenge with B. abortus 544. We constructed eukaryotic expression vectors called pCIBFR and pCIP39, encoding BFR or P39 antigens, respectively, and we verified that these proteins were produced after transfection of COS-7 cells. PCIBFR or pCIP39 was injected intramuscularly three times, at 3-week intervals. pCIP39 induced higher antibody responses than did the DNA vector encoding BFR. Both vectors elicited a T-cell-proliferative response and also induced a strong gamma interferon production upon restimulation with either the specific antigens or Brucella extract. In this report, we also demonstrat that animals immunized with these plasmids elicited a strong and long-lived memory immune response which persisted at least 3 months after the third vaccination. Furthermore, pCIBFR and pCIP39 induced a typical T-helper 1-dominated immune response in mice, as determined by cytokine or immunoglobulin G isotype analysis. The pCIP39 delivered by intramuscular injection (but not the pCIBFR or control vectors) induced a moderate protection in BALB/c mice challenged with B. abortus 544 compared to that observed in positive control mice vaccinated with S19.
PMCID: PMC98760  PMID: 11553569
7.  Protection of BALB/c Mice against Brucella abortus 544 Challenge by Vaccination with Bacterioferritin or P39 Recombinant Proteins with CpG Oligodeoxynucleotides as Adjuvant 
Infection and Immunity  2001;69(8):4816-4822.
The P39 and the bacterioferrin (BFR) antigens of Brucella melitensis 16M were previously identified as T dominant antigens able to induce both delayed-type hypersensivity in sensitized guinea pigs and in vitro gamma interferon (IFN-γ) production by peripheral blood mononuclear cells from infected cattle. Here, we analyzed the potential for these antigens to function as a subunitary vaccine against Brucella abortus infection in BALB/c mice, and we characterized the humoral and cellular immune responses induced. Mice were injected with each of the recombinant proteins alone or adjuvanted with either CpG oligodeoxynucleotides (CpG ODN) or non-CpG ODN. Mice immunized with the recombinant antigens with CpG ODN were the only group demonstrating both significant IFN-γ production and T-cell proliferation in response to either Brucella extract or to the respective antigen. The same conclusion holds true for the antibody response, which was only demonstrated in mice immunized with recombinant antigens mixed with CpG ODN. The antibody titers (both immunoglobulin G1 [IgG1] and IgG2a) induced by P39 immunization were higher than the titers induced by BFR (only IgG2a). Using a B. abortus 544 challenge, the level of protection was analyzed and compared to the protection conferred by one immunization with the vaccine strain B19. Immunization with P39 and CpG ODN gave a level of protection comparable to the one conferred by B19 at 4 weeks postchallenge, and the mice were still significantly protected at 8 weeks postchallenge, although to a lesser extent than the B19-vaccinated group. Intriguingly, no protection was detected after BFR vaccination. All other groups did not demonstrate any protection.
PMCID: PMC98569  PMID: 11447155
8.  CD8α+ and CD8α− Subclasses of Dendritic Cells Direct the Development of Distinct T Helper Cells In Vivo  
Cells of the dendritic family display some unique properties that confer to them the capacity to sensitize naive T cells in vitro and in vivo. In the mouse, two subclasses of dendritic cells (DCs) have been described that differ by their CD8α expression and their localization in lymphoid organs. The physiologic function of both cell populations remains obscure. Studies conducted in vitro have suggested that CD8α+ DCs could play a role in the regulation of immune responses, whereas conventional CD8α− DCs would be more stimulatory. We report here that both subclasses of DCs efficiently prime antigen-specific T cells in vivo, and direct the development of distinct T helper (Th) populations. Antigen-pulsed CD8α+ and CD8α− DCs are separated after overnight culture in recombinant granulocyte/macrophage colony-stimulating factor and injected into the footpads of syngeneic mice. Administration of CD8α− DCs induces a Th2-type response, whereas injection of CD8α+ DCs leads to Th1 differentiation. We further show that interleukin 12 plays a critical role in Th1 development by CD8α+ DCs. These findings suggest that the nature of the DC that presents the antigen to naive T cells may dictate the class selection of the adaptative immune response.
PMCID: PMC2192907  PMID: 9927520
primary response; T helper cell type 1/type 2 balance; interleukin 12; tolerance; memory
9.  Susceptibility of Bovine Antigen-Presenting Cells to Infection by Bovine Herpesvirus 1 and In Vitro Presentation to T Cells: Two Independent Events 
Journal of Virology  1999;73(6):4840-4846.
The aim of the present study was to develop an in vitro system for presentation of bovine herpesvirus 1 (BHV-1) antigens to bovine T lymphocytes and to characterize the antigen-presenting cells (APC) which efficiently activate CD4+ T cells. Two approaches were used to monitor the infection of APC by BHV-1 as follows: (i) detection of viral glycoproteins at the cell surface by immunofluorescence staining and (ii) detection of UL26 transcripts by reverse transcription-PCR. The monocytes were infected, while dendritic cells (DC) did not demonstrate any detectable viral expression. These data suggest that monocytes are one site of replication, while DC are not. The capacities of monocytes and DC to present BHV-1 viral antigens in vitro were compared. T lymphocytes (CD2+ or CD4+) from BHV-1 immune cattle were stimulated in the presence of APC previously incubated with live or inactivated wild-type BHV-1. DC stimulated strong proliferation of Ag-specific T cells, while monocytes were poor stimulators of T-cell proliferation. When viral attachment to the surface of the APC was inhibited by virus pretreatment with soluble heparin, T-cell proliferation was dramatically decreased. Unexpectedly, incubation of DC and monocytes with the deletion mutant BHV-1 gD−/−, which displays impaired fusion capacity, resulted in strong activation of T lymphocytes by both APC types. Collectively, these results indicate that presentation of BHV-1 antigens to immune T cells is effective in the absence of productive infection and suggest that BHV-1 gD−/− mutant virus could be used to induce virus-specific immune responses in cattle.
PMCID: PMC112527  PMID: 10233945

Results 1-9 (9)