PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Immunoregulatory properties of clinical grade mesenchymal stromal cells: evidence, uncertainties, and clinical application 
Mesenchymal stromal cell (MSC)-based therapy holds great promise for treating immune disorders and for regenerative medicine in agreement with their paracrine trophic and immunosuppressive activities. Various processes have been developed worldwide to produce clinical grade MSCs but, so far, it is not known if one given MSC is more efficient than another. In addition, while their broad activity on innate and adaptative immune cell subsets is now widely admitted, the precise mechanisms supporting their immunoregulatory capacities are still a matter of debate. Finally, quantitative immunological potency assays correlated to clinical efficacy and clinically relevant immunomonitoring approaches for MSC-treated patients are sorely needed. Multiple parameters could influence the immunomodulatory potential of therapeutic MSCs. The most important challenge is now to differentiate, within a high number of poorly comparable and even contradictory pre-clinical studies, the parameters that could have some clinical impact from those that are only due to uncontrolled experimental variability. Importantly, besides MSC-related differences, primarily linked to production processes, several important variables associated with immune assays themselves, including selection of effector immune cells, activation signals, and read-out techniques, should be carefully considered to obtain solid results with potential therapeutic application. In this review, we establish a core of common and reproducible immunological properties of MSCs, shed light on technical issues concerning immunomodulatory potential assessment, and put them into perspective when considering clinical application.
doi:10.1186/scrt214
PMCID: PMC3706914  PMID: 23742637
2.  CD4+CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor–β–dependent manner 
The Journal of Experimental Medicine  2005;202(8):1075-1085.
Tumor growth promotes the expansion of CD4+CD25+ regulatory T (T reg) cells that counteract T cell–mediated immune responses. An inverse correlation between natural killer (NK) cell activation and T reg cell expansion in tumor-bearing patients, shown here, prompted us to address the role of T reg cells in controlling innate antitumor immunity. Our experiments indicate that human T reg cells expressed membrane-bound transforming growth factor (TGF)–β, which directly inhibited NK cell effector functions and down-regulated NKG2D receptors on the NK cell surface. Adoptive transfer of wild-type T reg cells but not TGF-β−/− T reg cells into nude mice suppressed NK cell–mediated cytotoxicity, reduced NKG2D receptor expression, and accelerated the growth of tumors that are normally controlled by NK cells. Conversely, the depletion of mouse T reg cells exacerbated NK cell proliferation and cytotoxicity in vivo. Human NK cell–mediated tumor recognition could also be restored by depletion of T reg cells from tumor-infiltrating lymphocytes. These findings support a role for T reg cells in blunting the NK cell arm of the innate immune system.
doi:10.1084/jem.20051511
PMCID: PMC2213209  PMID: 16230475
3.  Novel mode of action of c-kit tyrosine kinase inhibitors leading to NK cell–dependent antitumor effects 
Journal of Clinical Investigation  2004;114(3):379-388.
Mutant isoforms of the KIT or PDGF receptors expressed by gastrointestinal stromal tumors (GISTs) are considered the therapeutic targets for STI571 (imatinib mesylate; Gleevec), a specific inhibitor of these tyrosine kinase receptors. Case reports of clinical efficacy of Gleevec in GISTs lacking the typical receptor mutations prompted a search for an alternate mode of action. Here we show that Gleevec can act on host DCs to promote NK cell activation. DC-mediated NK cell activation was triggered in vitro and in vivo by treatment of DCs with Gleevec as well as by a loss-of-function mutation of KIT. Therefore, tumors that are refractory to the antiproliferative effects of Gleevec in vitro responded to Gleevec in vivo in an NK cell–dependent manner. Longitudinal studies of Gleevec-treated GIST patients revealed a therapy-induced increase in IFN-γ production by NK cells, correlating with an enhanced antitumor response. These data point to a novel mode of antitumor action for Gleevec.
doi:10.1172/JCI200421102
PMCID: PMC489961  PMID: 15286804

Results 1-3 (3)