Search tips
Search criteria

Results 1-25 (29)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
more »
1.  Crosstalk between KIT and FGFR3 Promotes Gastrointestinal Stromal Tumor Cell Growth and Drug Resistance 
Cancer research  2014;75(5):880-891.
Kinase inhibitors such as imatinib have dramatically improved outcomes for GIST patients, but many patients develop resistance to these treatments. While in some patients this event corresponds with mutations in the GIST driver oncogenic kinase KIT, other patients development resistance without KIT mutations. In this study, we address this patient subset in reporting a functional dependence of GIST on the FGF receptor FGFR3 and its crosstalk with KIT in GIST cells. Addition of the FGFR3 ligand FGF2 to GIST cells restored KIT phosphorylation during imatinib treatment, allowing sensitive cells to proliferate in the presence of the drug. FGF2 expression was increased in imatinib-resistant GIST cells, the growth of which was blocked by RNAi-mediated silencing of FGFR3. Moreover, combining KIT and FGFR3 inhibitors synergized to block the growth of imatinib-resistant cells. Signaling crosstalk between KIT and FGFR3 activated the MAPK pathway to promote resistance to imatinib. Clinically, an immunohistochemical analysis of tumor specimens from imatinib-resistant GIST patients revealed a relative increase in FGF2 levels, with a trend towards increased expression in imatinib-naïve samples consistent with possible involvement in drug resistance. Our findings provide a mechanistic rationale to evaluate existing FGFR inhibitors and multi-kinase inhibitors that target FGFR3 as promising strategies to improve treatment of GIST patients with de novo or acquired resistance to imatinib.
PMCID: PMC4348216  PMID: 25432174
2.  Correlation of KIT and PDGFRA mutational status with clinical benefit in patients with gastrointestinal stromal tumor treated with sunitinib in a worldwide treatment-use trial 
BMC Cancer  2016;16:22.
Several small studies indicated that the genotype of KIT or platelet-derived growth factor receptor-α (PDGFRA) contributes in part to the level of clinical effectiveness of sunitinib in gastrointestinal stromal tumor (GIST) patients. This study aimed to correlate KIT and PDGFRA mutational status with clinical outcome metrics (progression-free survival [PFS], overall survival [OS], objective response rate [ORR]) in a larger international patient population.
This is a non-interventional, retrospective analysis in patients with imatinib-resistant or intolerant GIST who were treated in a worldwide, open-label treatment-use study (Study 1036; NCT00094029) in which sunitinib was administered at a starting dose of 50 mg/day on a 4-week-on, 2-week-off schedule. Molecular status was obtained in local laboratories with tumor samples obtained either pre-imatinib, post-imatinib/pre-sunitinib, or post-sunitinib treatment, and all available data were used in the analyses regardless of collection time. The primary analysis compared PFS in patients with primary KIT exon 11 versus exon 9 mutations (using a 2-sided log-rank test) and secondary analyses compared OS (using the same test) and ORR (using a 2-sided Pearson χ2 test) in the same molecular subgroups.
Of the 1124 sunitinib-treated patients in the treatment-use study, 230 (20 %) were included in this analysis, and baseline characteristics were similar between the two study populations. Median PFS was 7.1 months. A significantly better PFS was observed in patients with a primary mutation in KIT exon 9 (n = 42) compared to those with a primary mutation in exon 11 (n = 143; hazard ratio = 0.59; 95 % confidence interval, 0.39–0.89; P = 0.011), with median PFS times of 12.3 and 7.0 months, respectively. Similarly, longer OS and higher ORR were observed in patients with a primary KIT mutation in exon 9 versus exon 11. The data available were limited to investigate the effects of additional KIT or PDGFRA mutations on the efficacy of sunitinib treatment.
This large retrospective analysis confirms the prognostic significance of KIT mutation status in patients with GIST. This analysis also confirms the effectiveness of sunitinib as a post-imatinib therapy, regardless of mutational status.
Trial registration
Electronic supplementary material
The online version of this article (doi:10.1186/s12885-016-2051-5) contains supplementary material, which is available to authorized users.
PMCID: PMC4714485  PMID: 26772734
Sunitinib; Imatinib; GIST; KIT; KIT mutation; Imatinib-resistant GIST; Overall survival; Progression-free survival
3.  Pathologic and Molecular Features Correlate With Long-Term Outcome After Adjuvant Therapy of Resected Primary GI Stromal Tumor: The ACOSOG Z9001 Trial 
Journal of Clinical Oncology  2014;32(15):1563-1570.
The ACOSOG (American College of Surgeons Oncology Group) Z9001 (Alliance) study, a randomized, placebo-controlled trial, demonstrated that 1 year of adjuvant imatinib prolonged recurrence-free survival (RFS) after resection of primary GI stromal tumor (GIST). We sought to determine the pathologic and molecular factors associated with patient outcome.
Patients and Methods
There were 328 patients assigned to the placebo arm and 317 to the imatinib arm. Median patient follow-up was 74 months. There were 645 tumor specimens available for mitotic rate or mutation analysis.
RFS remained superior in the imatinib arm (hazard ratio, 0.6; 95% CI, 0.43 to 0.75; Cox model–adjusted P < .001). On multivariable analysis of patients in the placebo arm, large tumor size, small bowel location, and high mitotic rate were associated with lower RFS, whereas tumor genotype was not significantly associated with RFS. Multivariable analysis of patients in the imatinib arm yielded similar findings. When comparing the two arms, imatinib therapy was associated with higher RFS in patients with a KIT exon 11 deletion of any type, but not a KIT exon 11 insertion or point mutation, KIT exon 9 mutation, PDGFRA mutation, or wild-type tumor, although some of these patient groups were small. Adjuvant imatinib did not seem to alter overall survival.
Our findings show that tumor size, location, and mitotic rate, but not tumor genotype, are associated with the natural history of GIST. Patients with KIT exon 11 deletions assigned to 1 year of adjuvant imatinib had a longer RFS.
PMCID: PMC4026579  PMID: 24638003
4.  Ponatinib inhibits polyclonal drug-resistant KIT oncoproteins and shows therapeutic potential in heavily pretreated gastrointestinal stromal tumor (GIST) patients 
KIT is the major oncogenic driver of gastrointestinal stromal tumors (GISTs). Imatinib, sunitinib and regorafenib are approved therapies; however, efficacy is often limited by the acquisition of polyclonal secondary resistance mutations in KIT, with those located in the activation (A) loop (exons 17/18) being particularly problematic. Here we explored the KIT inhibitory activity of ponatinib in preclinical models and describe initial characterization of its activity in GIST patients.
Experimental Design
The cellular and in vivo activities of ponatinib, imatinib, sunitinib and regorafenib against mutant KIT were evaluated using an accelerated mutagenesis assay and a panel of engineered and GIST-derived cell lines. The ponatinib-KIT co-structure was also determined. The clinical activity of ponatinib was examined in three GIST patients previously treated with all 3 FDA-approved agents.
In engineered and GIST-derived cell lines, ponatinib potently inhibited KIT exon 11 primary mutants and a range of secondary mutants, including those within the A-loop. Ponatinib also induced regression in engineered and GIST-derived tumor models containing these secondary mutations. In a mutagenesis screen, 40 nM ponatinib was sufficient to suppress outgrowth of all secondary mutants except V654A, which was suppressed at 80 nM. This inhibitory profile could be rationalized based on structural analyses. Ponatinib (30 mg daily) displayed encouraging clinical activity in two of three GIST patients.
Ponatinib possesses potent activity against most major clinically-relevant KIT mutants, and has demonstrated preliminary evidence of activity in patients with refractory GIST. These data strongly support further evaluation of ponatinib in GIST patients.
PMCID: PMC4233175  PMID: 25239608
KIT; GIST; ponatinib; tyrosine kinase inhibitor; resistance
5.  SDHC methylation in gastrointestinal stromal tumors (GIST): a case report 
BMC Medical Genetics  2015;16:87.
Gastrointestinal stromal tumors (GIST) recently have been recognized as a genetically and biologically heterogeneous disease. In addition to KIT or PDGFRA mutated GIST, mutational inactivation of succinate dehydrogenase (SDH) subunits has been detected in the KIT/PDGFRA wild-type subgroup, referred to as SDH deficient (dSDH). Even though most dSDH GIST harbor mutations in SDHx subunit genes, some are SDHx wild type.
Epigenetic regulation by DNA methylation of CpG islands recently has been found to be an alternative mechanism underlying the lack of SDH complex in GIST.
Case presentation
We report a particular case of dSDH GIST, previously analyzed with microarrays and next-generation sequencing, for which no molecular pathogenetic events have been identified. Gene expression analysis showed remarkable down-modulation of SDHC mRNA with respect to all other GIST samples, both SDHA-mutant and KIT/PDGFRA-mutant GIST. By a bisulfite methylation assay targeted to 2 SDHC CpG islands, we detected hypermethylation of the SDHC promoter.
Herein we report an additional case of dSDH GIST without SDHx mutation but harboring hypermethylation in the SDHC promoter, thus confirming the complexity of the molecular background of this subtype of GIST.
Electronic supplementary material
The online version of this article (doi:10.1186/s12881-015-0233-7) contains supplementary material, which is available to authorized users.
PMCID: PMC4587653  PMID: 26415883
SDHC; Methylation; Hypermethylation; GIST; dSDH GIST
6.  Sorafenib Inhibits Many Kinase Mutations Associated with Drug-Resistant Gastrointestinal Stromal Tumors 
Molecular cancer therapeutics  2012;11(8):1770-1780.
Sorafenib has substantial clinical activity as third- or fourth-line treatment of imatinib- and sunitinib-resistant gastrointestinal stromal tumors (GIST). Because sorafenib targets both angiogenesis-related kinases (VEGFR) and the pathogenetic kinases found in GIST (KIT or PDGFRA), the molecular basis for sorafenib efficacy in this setting remains unknown. We sought to determine the spectrum of activity of sorafenib against different mutant kinases associated with drug-sensitive and drug-resistant GIST. We compared the activity of imatinib and sorafenib against transiently expressed mutant forms of KIT and PDGFRA, including various secondary mutations that have been identified in imatinib-resistant or sunitinib-resistant GISTs. We also examined these drugs against four GIST cell lines, three of which are imatinib resistant. In our in vitro studies, we determined that sorafenib inhibited imatinib-resistant mutations in exons encoding the ATP/drug-binding pocket and in exons encoding the activation loop, with the exception of substitutions at KIT codon D816 and PDGFRA codon 842. Notably our data indicate that sorafenib is more effective than imatinib or sunitinib for inhibiting the kinase activity of drug-resistant KIT mutants (as assessed by biochemical IC50). We hypothesize that a major determinant of the efficacy of sorafenib for treatment of advanced GIST is the activity of this agent against KIT or PDGFRA-mutant kinases. These results have implications for the further development of treatments for drug-resistant GIST.
PMCID: PMC3992122  PMID: 22665524
7.  Genetic Profiling to Determine Risk of Relapse Free Survival in High-risk Localized Prostate Cancer 
The characterization of actionable mutations in human tumors is a prerequisite for the development of individualized, targeted therapy. We examined the prevalence of potentially therapeutically actionable mutations in patients with high risk clinically localized prostate cancer.
Experimental Design
48 samples of formalin fixed paraffin embedded prostatectomy tissue from a neoadjuvant chemotherapy trial were analyzed. DNA extracted from microdissected tumor was analyzed for 643 common solid tumor mutations in 53 genes using mass spectroscopy based sequencing. In addition, PTEN loss and ERG translocations were examined using immunohistochemistry in associated tissue microarrays. Association with relapse during 5 years of follow-up was examined in exploratory analyses of the potential clinical relevance of the genetic alterations.
Of the 40 tumors evaluable for mutations, 10% had point mutations in potentially actionable cancer genes. Of the 47 tumors evaluable for IHC, 36% had PTEN loss and 40% had ERG rearrangement. Individual mutations were not frequent enough to determine associations with relapse. Using Kaplan-Meier analysis with a log-rank test, the 16 patients who had PTEN loss had a significantly shorter median relapse free survival, 19 vs. 106 months (p = .01).
This study confirms that point mutations in the most common cancer regulatory genes in prostate cancer are rare. However, the PIK3CA/AKT pathway was mutated in 10% of our samples. While point mutations alone did not have a statistically significant association with relapse, PTEN loss was associated with an increased relapse in high risk prostate cancer treated with chemotherapy followed by surgery.
PMCID: PMC3947466  PMID: 24352642
8.  Efficacy and Safety of Regorafenib in Patients With Metastatic and/or Unresectable GI Stromal Tumor After Failure of Imatinib and Sunitinib: A Multicenter Phase II Trial 
Journal of Clinical Oncology  2012;30(19):2401-2407.
Metastatic GI stromal tumor (GIST) is a life-threatening disease with no therapy of proven efficacy after failure of imatinib and sunitinib. Regorafenib is a structurally unique inhibitor of multiple cancer-associated kinases, including KIT and platelet-derived growth factor receptor (PDGFR), with broad-spectrum anticancer activity in preclinical and early-phase trials. Because KIT and PDGFR-α remain drivers of GIST after resistance to imatinib and sunitinib, we performed a multicenter single-stage phase II trial of regorafenib in patients with advanced GIST after failure of at least imatinib and sunitinib.
Patients and Methods
Patients received regorafenib orally, 160 mg daily, on days 1 to 21 of a 28-day cycle. Disease assessment was performed every two cycles per RECIST 1.1. Primary end point was clinical benefit rate (CBR), defined as objective responses (ie, complete or partial response [PR] as well as stable disease [SD] ≥ 16 weeks). Serial tumor biopsies were obtained from consenting patients whenever possible.
From February to December 2010, 34 patients were enrolled at four US centers. As of July 28, 2011, 33 patients had received at least two cycles of regorafenib (range, two to 17 cycles). CBR was 79% (95% CI, 61% to 91%). Four patients achieved PR, and 22 exhibited SD ≥ 16 weeks. Median progression-free survival was 10.0 months. The most common grade 3 toxicities were hypertension and hand-foot-skin reaction.
Regorafenib has significant activity in patients with advanced GIST after failure of both imatinib and sunitinib. A phase III trial of regorafenib versus placebo is ongoing to define more fully the safety and efficacy of regorafenib in this setting.
PMCID: PMC3675695  PMID: 22614970
9.  Quadruple wild-type (WT) GIST: defining the subset of GIST that lacks abnormalities of KIT, PDGFRA, SDH, or RAS signaling pathways 
Cancer Medicine  2014;4(1):101-103.
A subset of GISTs lack mutations in the KIT/PDGFRA or RAS pathways and yet retain an intact succinate dehydrogensase (SDH) complex. We propose that these KIT/PDGFRA/SDH/RAS-P WT GIST tumors be designated as quadruple wild-type (WT) GIST. Further molecular and clinicophatological characterization of quadruple WT GIST will help to determine their prognosis as well as assist in the optimization of medical management, including clinical test of novel therapies.
PMCID: PMC4312123  PMID: 25165019
BRAF; gastrointestinal stromal tumors; GIST; NF-1; quadruple negative; quadruple WT; RAS; SDH deficiency; SDHA; SDHB; wild type
10.  Gene expression of the IGF pathway family distinguishes subsets of gastrointestinal stromal tumors wild type for KIT and PDGFRA 
Cancer Medicine  2013;2(1):21-31.
Gastrointestinal stromal tumors (GISTs) arise from the interstitial cells of Cajal (ICCs) and are the most common mesenchymal neoplasm of the gastrointestinal tract. While the majority of GISTs harbor activating mutations in either the v-kit Hardy-Zuckerman feline sarcoma viral oncogene homolog (KIT) or platelet-derived growth factor receptor alpha (PDGFRA) tyrosine kinases, approximately 10–15% of adult GISTs and 85% of pediatric GISTs lack such mutations. These “wild-type” GISTs have been reported to express high levels of the insulin-like growth factor 1 receptor (IGF1R), and IGF1R-targeted therapy of wild-type GISTs is being evaluated in clinical trials. However, it is not clear that all wild-type GISTs express IGF1R, because studies to date have predominantly focused on a particular subtype of gastric wild-type GIST that is deficient in the mitochondrial succinate dehydrogenase (SDH) complex. This study of a series of 136 GISTs, including 72 wild-type specimens, was therefore undertaken to further characterize wild-type GIST subtypes based on the relative expression of transcripts encoding IGF1R. Additional transcripts relevant to GIST biology were also evaluated, including members of the IGF-signaling pathway (IGF1, IGF2, and insulin receptor [INSR]), neural markers (CDH2[CDH: Cadherin], neurofilament, light polypeptide, LHX2 [LHX: LIM homeobox], and KIRREL3 [KIRREL: kin of IRRE like]), KIT, PDGFRA, CD34, and HIF1A. Succinate dehydrogenase complex, subunit B protein expression was also assessed as a measure of SDH complex integrity. In addition to the previously described SDH-deficient, IGF1Rhigh wild-type GISTs, other SDH-intact wild-type subpopulations were defined by high relative expression of IGF1R, neural markers, IGF1 and INSR, or low IGF1R coupled with high IGF2. These results underscore the complexity and heterogeneity of wild-type GISTs that will need to be factored into molecularly-targeted therapeutic strategies.
PMCID: PMC3797556  PMID: 24133624
Gastrointestinal stromal tumor; IGF1R; wild type
11.  Integrated genomic study of quadruple-WT GIST (KIT/PDGFRA/SDH/RAS pathway wild-type GIST) 
BMC Cancer  2014;14:685.
About 10-15% of adult gastrointestinal stromal tumors (GIST) and the vast majority of pediatric GIST do not harbour KIT or platelet-derived growth factor receptor alpha (PDGFRA) mutations (J Clin Oncol 22:3813–3825, 2004; Hematol Oncol Clin North Am 23:15–34, 2009). The molecular biology of these GIST, originally defined as KIT/PDGFRA wild-type (WT), is complex due to the existence of different subgroups with distinct molecular hallmarks, including defects in the succinate dehydrogenase (SDH) complex and mutations of neurofibromatosis type 1 (NF1), BRAF, or KRAS genes (RAS-pathway or RAS-P).
In this extremely heterogeneous landscape, the clinical profile and molecular abnormalities of the small subgroup of WT GIST suitably referred to as quadruple wild-type GIST (quadrupleWT or KITWT/PDGFRAWT/SDHWT/RAS-PWT) remains undefined. The aim of this study is to investigate the genomic profile of KITWT/PDGFRAWT/SDHWT/RAS-PWT GIST, by using a massively parallel sequencing and microarray approach, and compare it with the genomic profile of other GIST subtypes.
We performed a whole genome analysis using a massively parallel sequencing approach on a total of 16 GIST cases (2 KITWT/PDGFRAWT/SDHWT and SDHBIHC+/SDHAIHC+, 2 KITWT/PDGFRAWT/SDHAmut and SDHBIHC-/SDHAIHC- and 12 cases of KITmut or PDGFRAmut GIST). To confirm and extend the results, whole-genome gene expression analysis by microarray was performed on 9 out 16 patients analyzed by RNAseq and an additional 20 GIST patients (1 KITWT/PDGFRAWTSDHAmut GIST and 19 KITmut or PDGFRAmut GIST). The most impressive data were validated by quantitave PCR and Western Blot analysis.
We found that both cases of quadrupleWT GIST had a genomic profile profoundly different from both either KIT/PDGFRA mutated or SDHA-mutated GIST. In particular, the quadrupleWT GIST tumors are characterized by the overexpression of molecular markers (CALCRL and COL22A1) and of specific oncogenes including tyrosine and cyclin- dependent kinases (NTRK2 and CDK6) and one member of the ETS-transcription factor family (ERG).
We report for the first time an integrated genomic picture of KITWT/PDGFRAWT/SDHWT/RAS-PWT GIST, using massively parallel sequencing and gene expression analyses, and found that quadrupleWT GIST have an expression signature that is distinct from SDH-mutant GIST as well as GIST harbouring mutations in KIT or PDGFRA. Our findings suggest that quadrupleWT GIST represent another unique group within the family of gastrointestintal stromal tumors.
Electronic supplementary material
The online version of this article (doi:10.1186/1471-2407-14-685) contains supplementary material, which is available to authorized users.
PMCID: PMC4181714  PMID: 25239601
Gastrointestinal stromal tumors (GIST); Wild-type; KIT; PDGFRA; Succinate dehydrogenase; SDHA; RAS; QuadrupleWT
13.  Mitotic recombination as evidence of alternative pathogenesis of gastrointestinal stromal tumours in neurofibromatosis type 1 
Journal of Medical Genetics  2007;44(1):e61.
Neurofibromatosis type 1 (NF1) is a neurocutaneous disorder resulting in the growth of a variety of tumours, and is inherited in an autosomal dominant pattern. Gastrointestinal stromal tumours (GISTs) are mesenchymal tumours that commonly harbour oncogenic mutations in KIT or PDGFRA and are thought to arise from the interstitial cells of Cajal (ICC; the pacemaker cells of the gut).
To characterise two patients with NF1 and GISTs.
Two patients were genotyped for germline mutations in NF1. GISTs from both patients were genotyped for somatic mutations in KIT and PDGFRA. Loss of heterozygosity (LOH) of NF1 in one GIST was assessed by genotyping seven microsatellite markers spanning 2.39 Mb of the NF1 locus in the tumour and in genomic DNA. The known germline mutation in NF1 was confirmed in GIST DNA by sequencing. The copy number of the mutated NF1 allele was determined by multiplex ligand‐dependent probe amplification.
GISTs from both patients were of wild type for mutations in KIT and PDGFRA. In the GIST with adequate DNA, all seven markers were informative and showed LOH at the NF1 locus; sequencing of NF1 from that GIST showed no wild‐type sequence, suggesting that it was lost in the tumour. Multiplex ligand‐dependent probe amplification analysis showed that two copies of all NF1 exons were present.
This is the first evidence of mitotic recombination resulting in a reduction to homozygosity of a germline NF1 mutation in an NF1‐associated GIST. We hypothesise that the LOH of NF1 and lack of KIT and PDGFRA mutations are evidence of an alternative pathogenesis in NF1‐associated GISTs.
PMCID: PMC2597901  PMID: 17209131
Interstitial cell of Cajal; loss of heterozygosity; mitotic recombination
14.  Correlation of Kinase Genotype and Clinical Outcome in the North American Intergroup Phase III Trial of Imatinib Mesylate for Treatment of Advanced Gastrointestinal Stromal Tumor: CALGB 150105 Study by Cancer and Leukemia Group B and Southwest Oncology Group 
Journal of Clinical Oncology  2008;26(33):5360-5367.
Imatinib mesylate is standard treatment for patients who have advanced gastrointestinal stromal tumor (GIST), but not all patients benefit equally. In previous studies, GIST genotype correlated with treatment outcome and optimal imatinib dosing.
Patients and Methods
We examined the relationship between kinase genotype and treatment outcome for 428 patients enrolled on the North American phase III study SWOG S0033/CALGB 150105 and treated with either 400 mg or 800 mg daily doses of imatinib.
The presence of KIT exon 11–mutant genotype (n = 283) correlated with improved treatment outcome when compared with KIT exon 9–mutant (n = 32) and wild-type (WT; n = 67) genotypes for objective response (complete response [CR]/partial response [PR], 71.7% v 44.4% [P = .007]; and 44.6% [P = .0002], respectively); time to tumor progression (TTP; median 24.7 months v 16.7 and 12.8 months, respectively); and overall survival (OS; median 60.0 months v 38.4 and 49.0 months, respectively). The survival outcomes for patients with exon 9–mutant, exon 11–mutant or WT GIST were not affected by imatinib dose. However, there was evidence of improved response rates for patients with exon 9–mutant tumors treated with imatinib 800 mg versus 400 mg (CR/PR, 67% v 17%; P = .02). Patients who had CD117-negative GIST had similar TTP but inferior OS compared with patients who had CD117-positive disease, which suggests that patients who have CD117-negative GIST may benefit from imatinib treatment. In addition, we identified novel but rare mutations of the KIT extracellular domain (exons 8 and 9).
We confirmed the favorable impact of KIT exon 11 genotype when compared with KIT exon 9 and wild-type genotype for patients with advanced GIST who are treated with imatinib.
PMCID: PMC2651078  PMID: 18955451
15.  Primary and Secondary Kinase Genotypes Correlate With the Biological and Clinical Activity of Sunitinib in Imatinib-Resistant Gastrointestinal Stromal Tumor 
Journal of Clinical Oncology  2008;26(33):5352-5359.
Most gastrointestinal stromal tumors (GISTs) harbor mutant KIT or platelet-derived growth factor receptor α (PDGFRA) kinases, which are imatinib targets. Sunitinib, which targets KIT, PDGFRs, and several other kinases, has demonstrated efficacy in patients with GIST after they experience imatinib failure. We evaluated the impact of primary and secondary kinase genotype on sunitinib activity.
Patients and Methods
Tumor responses were assessed radiologically in a phase I/II trial of sunitinib in 97 patients with metastatic, imatinib-resistant/intolerant GIST. KIT/PDGFRA mutational status was determined for 78 patients by using tumor specimens obtained before and after prior imatinib therapy. Kinase mutants were biochemically profiled for sunitinib and imatinib sensitivity.
Clinical benefit (partial response or stable disease for ≥ 6 months) with sunitinib was observed for the three most common primary GIST genotypes: KIT exon 9 (58%), KIT exon 11 (34%), and wild-type KIT/PDGFRA (56%). Progression-free survival (PFS) was significantly longer for patients with primary KIT exon 9 mutations (P = .0005) or with a wild-type genotype (P = .0356) than for those with KIT exon 11 mutations. The same pattern was observed for overall survival (OS). PFS and OS were longer for patients with secondary KIT exon 13 or 14 mutations (which involve the KIT-adenosine triphosphate binding pocket) than for those with exon 17 or 18 mutations (which involve the KIT activation loop). Biochemical profiling studies confirmed the clinical results.
The clinical activity of sunitinib after imatinib failure is significantly influenced by both primary and secondary mutations in the predominant pathogenic kinases, which has implications for optimization of the treatment of patients with GIST.
PMCID: PMC2651076  PMID: 18955458
16.  Phase II Trial of Neoadjuvant/adjuvant Imatinib Mesylate for Advanced Primary and Metastatic/recurrent Operable Gastrointestinal Stromal Tumors: Long-term Follow-up Results of Radiation Therapy Oncology Group 0132 
Annals of surgical oncology  2011;19(4):1074-1080.
Imatinib inhibits the KIT and PDGFR tyrosine kinases, resulting in its notable antitumor activity in gastrointestinal stromal tumor (GIST). We previously reported the early results of a multi-institutional prospective trial (RTOG 0132) using neoadjuvant/adjuvant imatinib either in primary resectable GIST or as a planned preoperative cytoreduction agent for metastatic/recurrent GIST.
Patients with primary GIST (≥5 cm, group A) or resectable metastatic/recurrent GIST (≥2 cm, group B) received neoadjuvant imatinib (600 mg/day) for approximately 2 months and maintenance postoperative imatinib for 2 years. We have now updated the clinical outcomes including progression-free survival, disease-specific survival, and overall survival at a median follow-up of 5.1 years, and we correlate these end points with duration of imatinib therapy.
Sixty-three patients were originally entered (53 analyzable: 31 in group A and 22 in group B). Estimated 5-year progression-free survival and overall survival were 57% in group A, 30% in group B; and 77% in group A, 68% in group B, respectively. Median time to progression has not been reached for group A and was 4.4 years for group B. In group A, in 7 of 11 patients, disease progressed >2 years from registration; 6 of 7 patients with progression had stopped imatinib before progression. In group B, disease progressed in 10 of 13 patients >2 years from registration; 6 of 10 patients with progressing disease had stopped imatinib before progression. There was no significant increase in toxicity compared with our previous shortterm analysis.
This long-term analysis suggests a high percentage of patients experienced disease progression after discontinuation of 2-year maintenance imatinib therapy after surgery. Consideration should be given to studying longer treatment durations in intermediate- to high-risk GIST patients.
PMCID: PMC3800166  PMID: 22203182
17.  Regorafenib Induces Rapid and Reversible Changes in Plasma Nitric Oxide and Endothelin-1 
American Journal of Hypertension  2012;25(10):1118-1123.
Hypertension is a toxicity of antiangiogenic therapies and a possible biomarker that identifies patients with superior cancer outcomes. Understanding its mechanism will aid in treatment and could lead to the development of other biomarkers for predicting toxicity and anticancer efficacy. Recent evidence implicates nitric oxide (NO) suppression and endothelin-1 (ET-1) stimulation as potential mechanisms leading to antiangiogenic therapy-induced hypertension. The aim of this study was to evaluate the effects of regorafenib, a novel broad-spectrum kinase inhibitor with activity against multiple targets, including vascular endothelial growth factor receptor 2 inhibition, on NO and ET-1 levels.
Regorafenib was administered to 32 subjects with gastrointestinal stromal tumor on a 3-week-on, 1-week-off basis. Plasma levels of NO and ET-1 were measured at baseline, 2, 4, and 6 weeks of therapy. Data analysis was by Wilcoxon rank-sum and paired t-tests.
Twenty subjects (63%) developed regorafenib-induced hypertension. Two weeks after starting regorafenib therapy, plasma ET-1 levels increased (25% increase, P < 0.05) and NO was suppressed (20% decrease, P < 0.05). These normalized after 1-week washout but ET-1 rose again by 30% (P < 0.05) and NO fell by 50% (P < 0.05) after restarting regorafenib.
These findings indicate that regorafenib induces a coordinated and reversible suppression of NO and stimulation of ET-1. Whether NO and ET-1 might predict therapeutic efficacy in these patients requires further study.
American Journal of Hypertension, advance online publication 12 July 2012. doi:10.1038/ajh.2012.97
PMCID: PMC3578478  PMID: 22785409
antiangiogenic therapy; blood pressure; endothelin-1; hypertension; nitric oxide
18.  Quantifying Membrane Curvature Generation of Drosophila Amphiphysin N-BAR Domains 
Biological membrane functions are coupled to membrane curvature, the regulation of which often involves membrane-associated proteins. The membrane-binding N-terminal amphipathic helix-containing BIN/Amphiphysin/Rvs (N-BAR) domain of amphiphysin is implicated in curvature generation and maintenance. Improving the mechanistic understanding of membrane curvature regulation by N-BAR domains requires quantitative experimental characterization.
We have measured tube pulling force modulation by the N-BAR domain of Drosophila amphiphysin (DA-N-BAR) bound to tubular membranes pulled from micropipette-aspirated giant vesicles. We observed that fluorescently-labeled DA-N-BAR showed significantly higher protein density on tubules compared to the connected low-curvature vesicle membrane. Furthermore, we found the equilibrium tube pulling force to be systematically dependent on the aqueous solution concentration of DA-N-BAR, thereby providing the first quantitative assessment of spontaneous curvature generation. At sufficiently high protein concentrations, pulled tubes required no external force to maintain mechanical equilibrium, in agreement with the qualitative spontaneous tubulation previously reported for amphiphysin.
PMCID: PMC3679405  PMID: 23772271
curvature sorting; curvature sensing; pulling force; GUV; membrane mechanics
19.  Molecular Target Modulation, Imaging, and Clinical Evaluation of Gastrointestinal Stromal Tumor Patients Treated with Sunitinib Malate after Imatinib Failure 
To evaluate sunitinib activity and potential cellular and molecular correlates in gastrointestinal stromal tumor (GIST) patients after imatinib failure, in addition to assessing the safety and pharmacokinetics (PK) of different dose schedules.
Experimental Design
In this open-label, dose-ranging, phase I/II study, 97 patients with metastatic imatinib-resistant/intolerant GIST received sunitinib at doses of 25, 50, or 75 mg/d on one of three schedules. Serial tumor imaging was done using computed tomography and [18F]fluoro-2-deoxy-d-glucose positron emission tomography scanning. PK and cell proliferation and KIT phosphorylation status in tumor biopsies were also analyzed.
Clinical benefit was observed in 52 patients (54%: 7 objective partial responses, 45 stable disease ≥6 months). Decreased tumor glycolytic activity was shown in most patients within 7 days of starting sunitinib using [18F]fluoro-2-deoxy-d-glucose positron emission tomography. Sunitinib treatment was associated with reduced tumor cell proliferation by >25% in 52% of cases analyzed and reduced levels of phospho-KIT in tumor biopsies (indicating target modulation). The recommended dose schedule was 50 mg/d for 4 weeks followed by 2 weeks off treatment. On the 50-mg dose across all schedules, 79% of PK-evaluable patients achieved total drug trough concentrations above the target concentration (50 ng/mL) within 14 days of dosing. In addition, adverse events were generally mild to moderate in severity.
Cellular and molecular analyses showed that sunitinib clinical activity is associated with inhibition of KIT in GIST following imatinib failure, illustrating the rational approach used to develop a therapy aimed at the underlying oncogenic signaling pathway aberrancy.
PMCID: PMC3417101  PMID: 19737946
20.  The multi-targeted receptor tyrosine kinase inhibitor, Linifanib (ABT-869), induces apoptosis through an AKT and Glycogen Synthase Kinase 3β-dependent pathway 
Molecular cancer therapeutics  2011;10(6):949-959.
The FMS-like receptor tyrosine kinase 3 (FLT3) plays an important role in controlling differentiation and proliferation of hematopoietic cells. Activating mutations in FLT3 occur in patients with acute myeloid leukemia (15-35%) resulting in abnormal cell proliferation. Furthermore, both adult and pediatric patients with acute myeloid leukemia (AML) harboring the FLT3 internal tandem duplication (ITD) mutation have a poor prognosis. Several inhibitors have been developed to target mutant FLT3 for the treatment of AML, yet the molecular pathways affected by drug inhibition of the mutated FLT3 receptor alone have not yet been characterized. Linifanib (ABT-869) is a multi-targeted tyrosine kinase receptor inhibitor that suppresses FLT3 signaling. In this paper, we demonstrate that treatment with Linifanib inhibits proliferation and induces apoptosis in ITD mutant cells in vitro and in vivo. We show that treatment with Linifanib reduces phosphorylation of AKT and glycogen synthase kinase 3β (GSK3β). In addition, we show that inhibition of GSK3β decreases Linifanib-induced apoptosis. This study demonstrates the importance of GSK3 as a potential target for AML therapy, particularly in patients with FLT3 ITD mutations.
PMCID: PMC3112478  PMID: 21471285
AML; FLT3 Inhibitor
21.  A Phase II Trial of Imatinib Mesylate in Merkel Cell Carcinoma (Neuroendocrine Carcinoma of the Skin): A Southwest Oncology Group Study (S0331) 
Imatinib mesylate (Gleevec®) was evaluated as a treatment for Merkel cell carcinoma (MCC, neuroendocrine carcinoma of the skin) based on the identification of strong c-KIT staining of these neoplasms.
Eligibility included patients with measurable metastatic or unresectable MCC, c-KIT (CD117) expression and a Zubrod performance status of 0–2. Imatinib 400 mg daily was administered orally in 28-day cycles to 23 patients.
Overall, imatinib was well tolerated with Grade 1 or 2 nausea, diarrhea, and hematologic toxicity as the most frequent side effects. A partial response was seen in 1 patient (4%; 95% CI: 0% – 22%). Median progression-free survival was 1 month (95% CI: 1–2 months). Median overall survival was 5 months (95% CI 2–8 months). One patient achieved a partial response and another had prolonged disease stabilization while receiving treatment.
The majority of patients progressed rapidly within 1–2 cycles of treatment. The observed progression-free survival and overall survival were not adequate to conclude that this agent was active in advanced MCC, and thus the planned second stage of patient accrual was not opened.
PMCID: PMC2978644  PMID: 20019577
22.  Survey of Activated FLT3 Signaling in Leukemia 
PLoS ONE  2011;6(4):e19169.
Activating mutations of FMS-like tyrosine kinase-3 (FLT3) are found in approximately 30% of patients with acute myeloid leukemia (AML). FLT3 is therefore an attractive drug target. However, the molecular mechanisms by which FLT3 mutations lead to cell transformation in AML remain unclear. To develop a better understanding of FLT3 signaling as well as its downstream effectors, we performed detailed phosphoproteomic analysis of FLT3 signaling in human leukemia cells. We identified over 1000 tyrosine phosphorylation sites from about 750 proteins in both AML (wild type and mutant FLT3) and B cell acute lymphoblastic leukemia (normal and amplification of FLT3) cell lines. Furthermore, using stable isotope labeling by amino acids in cell culture (SILAC), we were able to quantified over 400 phosphorylation sites (pTyr, pSer, and pThr) that were responsive to FLT3 inhibition in FLT3 driven human leukemia cell lines. We also extended this phosphoproteomic analysis on bone marrow from primary AML patient samples, and identify over 200 tyrosine and 800 serine/threonine phosphorylation sites in vivo. This study showed that oncogenic FLT3 regulates proteins involving diverse cellular processes and affects multiple signaling pathways in human leukemia that we previously appreciated, such as Fc epsilon RI-mediated signaling, BCR, and CD40 signaling pathways. It provides a valuable resource for investigation of oncogenic FLT3 signaling in human leukemia.
PMCID: PMC3084268  PMID: 21552520
23.  Met receptor sequence variants R970C and T992I lack transforming capacity 
Cancer research  2010;70(15):6233-6237.
High-throughput sequencing promises to accelerate the discovery of sequence variants, but distinguishing oncogenic mutations from irrelevant "passenger" mutations remains a major challenge. Here we present an analysis of two sequence variants of the MET receptor (hepatocyte growth factor receptor) R970C and T992I (also designated R988C and T1010I). Previous reports indicated these sequence variants are transforming and contribute to oncogenesis. We screened patients with chronic lymphocytic leukemia (CLL), acute myeloid leukemia (AML), chronic myelomonocytic leukemia (CMML), colorectal cancer, endometrial cancer, thyroid cancer, or melanoma as well as individuals without cancer and found these variants at low frequencies in most cohorts, including normal individuals. No evidence of increased phosphorylation or transformative capacity by either sequence variant was found. Since small-molecule inhibitors for MET are currently in development, it will be important to distinguish between oncogenic sequence variants and rare single-nucleotide polymorphisms to avoid the use of unnecessary and potentially toxic cancer therapy agents.
PMCID: PMC2913476  PMID: 20670955
cancer genetics; cancer genomics; targeted therapy
24.  Gene Expression Signatures and Response to Imatinib Mesylate in Gastrointestinal Stromal Tumor 
Despite initial efficacy of imatinib mesylate (IM) in most gastrointestinal stromal tumor (GIST) patients, many experience primary/secondary drug resistance. Therefore, clinical management of GIST may benefit from further molecular characterization of tumors before and after IM treatment.
Experimental Design
As part of a recent Phase II Trial of neoadjuvant/adjuvant IM treatment for advanced primary and recurrent operable GISTs (RTOG-S0132), gene expression profiling using oligonucleotide microarrays was performed on tumor samples obtained before and after IM therapy. Patients were classified according to changes in tumor size after treatment based on CT scan measurements. Gene profiling data were evaluated with Statistical Analysis of Microarrays (SAM) to identify differentially expressed genes (in pre-treatment GIST samples).
Based on SAM (FDR=10%), thirty-eight genes were expressed at significantly lower levels in the pre-treatment biopsy samples from tumors that significantly responded to 8 to 12 weeks of IM, i.e., ≥25% tumor reduction. Eighteen of these genes encoded KRAB domain containing zinc finger (KRAB-ZNF) transcriptional repressors. Importantly, ten KRAB-ZNF genes mapped to a single locus on chromosome 19p, and a subset predicted likely response to IM-based therapy in a naïve panel of GISTs. Furthermore, we found that modifying expression of genes within this predictive signature can enhance the sensitivity of GIST cells to IM.
Using clinical pre-treatment biopsy samples from a prospective neoadjuvant phase II trial we have identified a gene signature that includes KRAB-ZNF 91 subfamily members that may be both predictive of and functionally associated with likely response to short term IM treatment.
PMCID: PMC2822341  PMID: 19671739
GISTs; imatinib mesylate; microarray; KRAB-ZNF genes
25.  Phase II Trial of Neoadjuvant/Adjuvant Imatinib Mesylate (IM) for Advanced Primary and Metastatic/Recurrent Operable Gastrointestinal Stromal Tumor (GIST) – early results of RTOG 0132 
Journal of surgical oncology  2009;99(1):42-47.
Therapy for gastrointestinal stromal tumors (GIST) has changed significantly with the use of Imatinib Mesylate (IM). Despite the success of this drug in metastatic GIST, disease progression remains a perplexing clinical issue suggesting the need for multimodality management. There have been no prospective studies either evaluating the neoadjuvant use of IM in primary GIST or as a preoperative cytoreduction agent for metastatic GIST.
RTOG 0132 was a prospective phase II study evaluating safety and efficacy of neoadjuvant IM (600 mg/day) for patients with primary GIST or the preop use of IM in patients with operable metastatic GIST. The trial continued postop IM for 2 years.
63 patients were entered (52 analyzable), 30 patients with primary GIST (Group A) and 22 with metastatic GIST (Group B). Response (RECIST) in Group A was (7% partial, 83% stable, 10% unknown), in Group B (4.5% partial, 91% stable, 4.5% progression). Two year progression free survival (Group A 83%, Group B 77%). Estimated overall survival (Group A 93%, Group B 91%). Complications of surgery and IM toxicity were minimal.
This trial represents the first prospective report of preop IM in GIST. This approach is feasible, requires multidisciplinary consultations, is not associated with notable postop complications.
PMCID: PMC2606912  PMID: 18942073
GIST; neoadjuvant imatinib; locally advanced GIST; metastatic GIST

Results 1-25 (29)