PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-23 (23)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
1.  The Transmembrane E3 Ligase GRAIL Ubiquitinates and Degrades CD83 on CD4 T Cells1 
Ubiquitination of eukaryotic proteins regulates a broad range of cellular processes, including T cell activation and tolerance. We have previously demonstrated that GRAIL (gene related to anergy in lymphocytes), a transmembrane RING finger ubiquitin E3 ligase, initially described as induced during the induction of CD4 T cell anergy, is also expressed in resting CD4 T cells. In this study, we show that GRAIL can down-modulate the expression of CD83 (previously described as a cell surface marker for mature dendritic cells) on CD4 T cells. GRAIL-mediated down-modulation of CD83 is dependent on an intact GRAIL extracellular protease-associated domain and an enzymatically active cytosolic RING domain, and proceeds via the ubiquitin-dependent 26S proteosome pathway. Ubiquitin modification of lysine residues K168 and K183, but not K192, in the cytoplasmic domain of CD83 was shown to be necessary for GRAIL-mediated degradation of CD83. Reduced CD83 surface expression levels were seen both on anergized CD4 T cells and following GRAIL expression by retroviral transduction, whereas GRAIL knock-down by RNA interference in CD4 T cells resulted in elevated CD83 levels. Furthermore, CD83 expression on CD4 T cells contributes to T cell activation as a costimulatory molecule. This study supports the novel mechanism of ubiquitination by GRAIL, identifies CD83 as a substrate of GRAIL, and ascribes a role for CD83 in CD4 T cell activation.
doi:10.4049/jimmunol.0900204
PMCID: PMC4300110  PMID: 19542455
3.  Diminished Adenosine A1 Receptor Expression in Pancreatic α-Cells May Contribute to the Pathology of Type 1 Diabetes 
Diabetes  2013;62(12):4208-4219.
Prediabetic NOD mice exhibit hyperglucagonemia, possibly due to an intrinsic α-cell defect. Here, we show that the expression of a potential glucagon inhibitor, the adenosine A1 receptor (Adora1), is gradually diminished in α-cells of NOD mice, autoantibody-positive (AA+) and overtly type 1 diabetic (T1D) patients during the progression of disease. We demonstrated that islet inflammation was associated with loss of Adora1 expression through the alternative splicing of Adora1. Expression of the spliced variant (Adora1-Var) was upregulated in the pancreas of 12-week-old NOD versus age-matched NOD.B10 (non–diabetes-susceptible) control mice and was detected in the pancreas of AA+ patients but not in control subjects or overtly diabetic patients, suggesting that inflammation drives the splicing of Adora1. We subsequently demonstrated that Adora1-Var expression was upregulated in the islets of NOD.B10 mice after exposure to inflammatory cytokines and in the pancreas of NOD.SCID mice after adoptive transfer of activated autologous splenocytes. Adora1-Var encodes a dominant-negative N-terminal truncated isoform of Adora1. The splicing of Adora1 and loss of Adora1 expression on α-cells may explain the hyperglucagonemia observed in prediabetic NOD mice and may contribute to the pathogenesis of human T1D and NOD disease.
doi:10.2337/db13-0614
PMCID: PMC3837064  PMID: 24264405
4.  Reduced DEAF1 function during type 1 diabetes inhibits translation in lymph node stromal cells by suppressing Eif4g3 
The transcriptional regulator deformed epidermal autoregulatory factor 1 (DEAF1) has been suggested to play a role in maintaining peripheral tolerance by controlling the transcription of peripheral tissue antigen genes in lymph node stromal cells (LNSCs). Here, we demonstrate that DEAF1 also regulates the translation of genes in LNSCs by controlling the transcription of the poorly characterized eukaryotic translation initiation factor 4 gamma 3 (Eif4g3) that encodes eIF4GII. Eif4g3 gene expression was reduced in the pancreatic lymph nodes of Deaf1-KO mice, non-obese diabetic mice, and type 1 diabetes patients, where functional Deaf1 is absent or diminished. Silencing of Deaf1 reduced Eif4g3 expression, but increased the expression of Caspase 3, a serine protease that degrades eIF4GII. Polysome profiling showed that reduced Eif4g3 expression in LNSCs resulted in the diminished translation of various genes, including Anpep, the gene for aminopeptidase N, an enzyme involved in fine-tuning antigen presentation on major histocompatibility complex (MHC) class II. Together these findings suggest that reduced DEAF1 function, and subsequent loss of Eif4g3 transcription may affect peripheral tissue antigen (PTA) expression in LNSCs and contribute to the pathology of T1D.
doi:10.1093/jmcb/mjs052
PMCID: PMC3604916  PMID: 22923498
DEAF1; Eif4g3; translational control; peripheral tolerance; type 1 diabetes
5.  Differential mTOR and ERK Pathway Utilization by Effector CD4 T Cells Suggests Combinatorial Drug Therapy of Arthritis 
Clinical Immunology (Orlando, Fla.)  2011;142(2):127-138.
The signaling pathways utilized by naïve and experienced effector CD4 T cells during activation and proliferation were evaluated. While inhibition of either mTOR or MAPK alone was able to inhibit naïve T cell proliferation, both mTOR and MAPK (ERK) pathway inhibition was required to efficiently block experienced, effector CD4 T cell proliferation. This was demonstrated both in vitro, and in vivo by treating mice with collagen-induced arthritis using mTOR and/or ERK inhibitors. The combination of mTOR and ERK inhibition prevented or treated disease more efficiently than either agent alone. These data illustrate the different requirements of naïve and experienced effector CD4 T cells in the use of the mTOR and MAPK pathways in proliferation, and suggest that therapies targeting both the mTOR and MAPK pathways may be more effective than targeting either pathway alone in the treatment of CD4 T cell-mediated autoimmunity.
doi:10.1016/j.clim.2011.09.008
PMCID: PMC3273543  PMID: 22075384
CIA; CD4 T cells; mTOR; MAPK; activation pathways; combination therapy
6.  Cutting Edge: The Transmembrane E3 Ligase GRAIL Ubiquitinates the Costimulatory Molecule CD40 Ligand during the Induction of T Cell Anergy1 
Activation of naive T lymphocytes is regulated through a series of discrete checkpoints that maintain unresponsiveness to self. During this multistep process, costimulatory interactions act as inducible signals that allow APCs to selectively mobilize T cells against foreign Ags. In this study, we provide evidence that the anergy-associated E3 ubiquitin ligase GRAIL (gene related to anergy in lymphocytes) regulates expression of the costimulatory molecule CD40L on CD4 T cells. Using its luminal protease-associated domain, GRAIL binds to the luminal/extracellular portion of CD40L and facilitates transfer of ubiquitin molecules from the intracellular GRAIL RING (really interesting new gene) finger to the small cytosolic portion of CD40L. Down-regulation of CD40L occurred following ectopic expression of GRAIL in naive T cells from CD40−/− mice, and expression of GRAIL in bone marrow chimeric mice was associated with diminished lymphoid follicle formation. These data provide a model for intrinsic T cell regulation of costimulatory molecules and a molecular framework for the initiation of clonal T cell anergy.
PMCID: PMC2853377  PMID: 18641297
7.  Naive CD4 T Cell Proliferation Is Controlled by Mammalian Target of Rapamycin Regulation of GRAIL Expression1 
In this study, we demonstrate that the E3 ubiquitin ligase gene related to anergy in lymphocytes (GRAIL) is expressed in quiescent naive mouse and human CD4 T cells and has a functional role in inhibiting naive T cell proliferation. Following TCR engagement, CD28 costimulation results in the expression of IL-2 whose signaling through its receptor activates the Akt-mammalian target of rapamycin (mTOR) pathway. Activation of mTOR allows selective mRNA translation, including the epistatic regulator of GRAIL, Otubain-1 (Otub1), whose expression results in the degradation of GRAIL and allows T cell proliferation. The activation of mTOR appears to be the critical component of IL-2R signaling regulating GRAIL expression. CTLA4-Ig treatment blocks CD28 co-stimulation and resultant IL-2 expression, whereas rapamycin and anti-IL-2 treatment block mTOR activation downstream of IL-2R signaling. Thus, all three of these biotherapeutics inhibit mTOR-dependent translation of mRNA transcripts, resulting in blockade of Otub1 expression, maintenance of GRAIL, and inhibition of CD4 T cell proliferation. These observations provide a mechanistic pathway sequentially linking CD28 costimulation, IL-2R signaling, and mTOR activation as important requirements for naive CD4 T cell proliferation through the regulation of Otub1 and GRAIL expression. Our findings also extend the role of GRAIL beyond anergy induction and maintenance, suggesting that endogenous GRAIL regulates general cell cycle and proliferation of primary naive CD4 T cells.
doi:10.4049/jimmunol.0803986
PMCID: PMC2853371  PMID: 19414743
8.  TISSUE- AND AGE-SPECIFIC CHANGES IN GENE EXPRESSION DURING DISEASE INDUCTION AND PROGRESSION IN NOD MICE 
Clinical immunology (Orlando, Fla.)  2008;129(2):195-201.
Whole genome oligo-microarrays were used to characterize age-dependent and tissue-specific changes in gene expression in pancreatic lymph nodes, spleen, and peripheral blood cells, obtained from up to 8 individual NOD mice at 6 different time points (1.5 to 20 weeks of age), compared to NOD.B10 tissue controls. “Milestone Genes” are genes whose expression was significantly changed (~3 fold) as the result of splicing or changes in transcript level. Milestone Genes were identified among genes within type one diabetes (T1D) susceptibility regions (Idd). Milestone Genes showing uniform patterns of changes in expression at various time points were identified, but the patterns of distribution and kinetics of expression were unique to each tissue. Potential T1D candidate genes were identified among Milestone Genes within Idd regions and/or hierarchical clusters. These studies identified tissue- and age-specific changes in gene expression that may play an important role in the inductive or destructive events of T1D.
doi:10.1016/j.clim.2008.07.028
PMCID: PMC2592195  PMID: 18801706
Non-Obese Diabetic Mouse; Microarrays; Immune Pathogenesis of Type 1 Diabetes
9.  Tissue-targeted therapy of autoimmune diabetes using dendritic cells transduced to express IL-4 in NOD mice 
Clinical immunology (Orlando, Fla.)  2008;127(2):176-187.
A deficit in IL-4 production has been previously reported in both diabetic human patients and non-obese diabetic (NOD) mice. In addition, re-introducing IL-4 into NOD mice systemically, or as a transgene, led to a beneficial outcome in most studies. Here, we show that prediabetic, 12-wk old female NOD mice have a deficit in IL-4 expression in the pancreatic lymph nodes (PLN) compared to age-matched diabetes-resistant NOD.B10 mice. By bioluminescence imaging, we demonstrated that the PLN was preferentially targeted by bone marrow-derived dendritic cells (DCs) following intravenous (IV) administration. Following IV injection of DCs transduced to express IL-4 (DC/IL-4) into 12-wk old NOD mice, it was possible to significantly delay or prevent the onset of hyperglycemia. We then focused on the PLN to monitor, by microarray analysis, changes in gene expression induced by DC/IL-4 and observed a rapid normalization of the expression of many genes, that were otherwise under-expressed compared to NOD.B10 PLN. The protective effect of DC/IL-4 required both MHC and IL-4 expression by the DCs. Thus, adoptive cellular therapy, using DCs modified to express IL-4, offers an effective, tissue-targeted cellular therapy to prevent diabetes in NOD mice at an advanced stage of pre-diabetes, and may offer a safe approach to consider for treatment of high risk human pre-diabetic patients.
doi:10.1016/j.clim.2007.12.009
PMCID: PMC2453076  PMID: 18337172
10.  Gene therapy for type 1 diabetes: a novel approach for targeted treatment of autoimmunity 
Journal of Clinical Investigation  2004;114(7):892-894.
It has been difficult to develop therapies that target those T cells initiating and mediating the pathogenesis of autoimmune disease. Indeed, most current treatments indiscriminately affect both the autoreactive T cells and the “good” T cells, putting the patient at risk of compromised immune function. A new approach raises the possibility of targeted therapy for autoimmunity. Transplantation of hematopoietic stem cells modified to express a protective form of MHC class II corrects a defect in central tolerance. This method contrasts with other targeted therapies that attempt to modify peripheral tolerance, which is also defective in type 1 diabetes mellitus.
doi:10.1172/JCI200423168
PMCID: PMC518674  PMID: 15467826
11.  Antigen-specific T cell–mediated gene therapy in collagen-induced arthritis 
Journal of Clinical Investigation  2001;107(10):1293-1301.
Autoantigen-specific T cells have tissue-specific homing properties, suggesting that these cells may be ideal vehicles for the local delivery of immunoregulatory molecules. We tested this hypothesis by using type II collagen–specific (CII-specific) CD4+ T hybridomas or primary CD4+ T cells after gene transfer, as vehicles to deliver an immunoregulatory protein for the treatment of collagen-induced arthritis (CIA), a mouse model of rheumatoid arthritis (RA). CII-specific T cells or hybridomas were transduced using retroviral vectors to constitutively express the IL-12 antagonist, IL-12 p40. Transfer of engineered CD4+ T cells after immunization significantly inhibited the development of CIA, while cells transduced with vector control had no effect. The beneficial effect on CIA of IL-12 p40-transduced T cells required TCR specificity against CII, since transfer of T cells specific for another antigen producing equivalent amounts of IL-12 p40 had no effect. In vivo cell detection using bioluminescent labels and RT-PCR showed that transferred CII-reactive T-cell hybridomas accumulated in inflamed joints in mice with CIA. These results indicate that the local delivery of IL-12 p40 by T cells inhibited CIA by suppressing autoimmune responses at the site of inflammation. Modifying antigen-specific T cells by retroviral transduction for local expression of immunoregulatory proteins thus offers a promising strategy for treating RA.
PMCID: PMC209299  PMID: 11375419
12.  Local Delivery of Interleukin 4 by Retrovirus-Transduced T Lymphocytes Ameliorates Experimental Autoimmune Encephalomyelitis 
The Journal of Experimental Medicine  1997;185(9):1711-1714.
Experimental autoimmune encephalomyelitis (EAE) is an inflammatory autoimmune disease of the central nervous system which serves as a model for the human disease multiple sclerosis. We demonstrate here that encephalitogenic T cells, transduced with a retroviral gene, construct to express interleukin 4, and can delay the onset and reduce the severity of EAE when adoptively transferred to myelin basic protein–immunized mice. Thus, T lymphocytes transduced with retroviral vectors can deliver “regulatory cytokines” in a site-specific manner and may represent a viable therapeutic strategy for the treatment of autoimmune disease.
PMCID: PMC2196296  PMID: 9151908
13.  Redirecting cell-type specific cytokine responses with engineered interleukin-4 superkines 
Nature chemical biology  2012;8(12):990-998.
Cytokines dimerize their receptors, with binding of the “second chain” triggering signaling. In the interleukin (IL)-4/13 system, different cell types express varying levels of alternative second receptor chains (γc or IL-13Rα1), forming functionally distinct Type-I or Type-II complexes. We manipulated the affinity and specificity of second chain recruitment by human IL-4. A Type-I receptor-selective IL-4 ‘superkine’ with 3700-fold higher affinity for γc was 3-10 fold more potent than wild-type IL-4. Conversely, a variant with high affinity for IL-13Rα1 more potently activated cells expressing the Type-II receptor, and induced differentiation of dendritic cells from monocytes, implicating the Type-II receptor in this process. Superkines exhibited signaling advantages on cells with lower second chain levels. Comparative transcriptional analysis reveals that the superkines induce largely redundant gene expression profiles. Variable second chain levels can be exploited to redirect cytokines towards distinct cell subsets and elicit novel actions, potentially improving the selectivity of cytokine therapy.
doi:10.1038/nchembio.1096
PMCID: PMC3508151  PMID: 23103943
14.  Exploiting a natural conformational switch to engineer an Interleukin-2 superkine 
Nature  2012;484(7395):529-533.
The immunostimulatory cytokine interleukin-2 (IL-2) is a growth factor for a wide range of leukocytes, including T cells and natural killer (NK) cells1–3. Considerable effort has been invested using IL-2 as a therapeutic agent for a variety of immune disorders ranging from AIDS to cancer. However, adverse effects have limited its use in the clinic. On activated T cells, IL-2 signals through a quaternary “high affinity” receptor complex consisting of IL-2, IL-2Rα (termed CD25), IL-2Rβ, and γc4–8. Naïve T cells express only a low density of IL-2Rβ and γc, and are therefore relatively insensitive to IL-2, but acquire sensitivity after CD25 expression, which captures the cytokine and presents it to IL-2Rβ andγc. Here, using in vitro evolution, we eliminated IL-2’s functional requirement for CD25 expression by engineering an IL-2 “superkine” (termed super-2) with increased binding affinity for IL-2Rβ. Crystal structures of super-2 in free and receptor-bound forms showed that the evolved mutations are principally in the core of the cytokine, and molecular dynamics simulations indicated that the evolved mutations stabilized IL-2, including a flexible helix in the IL-2Rβ binding site, into an optimized receptor-binding conformation resembling that when bound to CD25. The evolved mutations in super-2 recapitulated the functional role of CD25 by eliciting potent phosphorylation of STAT5 and vigorous proliferation T cells irrespective of CD25 expression. Compared to IL-2, super-2 induced superior expansion of cytotoxic T cells, leading to improved anti-tumor responses in vivo, and elicited proportionally less expansion of T regulatory cells and reduced pulmonary edema. Collectively, we show that in vitro evolution has mimicked the functional role of CD25 in enhancing IL-2 potency and regulating target cell specificity, which has implications for immunotherapy.
doi:10.1038/nature10975
PMCID: PMC3338870  PMID: 22446627
15.  New tools for classification and monitoring of autoimmune diseases 
Nature reviews. Rheumatology  2012;8(6):317-328.
Rheumatologists see patients with a range of autoimmune diseases. Phenotyping these diseases for diagnosis, prognosis and selection of therapies is an ever increasing problem. Advances in multiplexed assay technology at the gene, protein, and cellular level have enabled the identification of `actionable biomarkers'; that is, biological metrics that can inform clinical practice. Not only will such biomarkers yield insight into the development, remission, and exacerbation of a disease, they will undoubtedly improve diagnostic sensitivity and accuracy of classification, and ultimately guide treatment. This Review provides an introduction to these powerful technologies that could promote the identification of actionable biomarkers, including mass cytometry, protein arrays, and immunoglobulin and T-cell receptor high-throughput sequencing. In our opinion, these technologies should become part of routine clinical practice for the management of autoimmune diseases. The use of analytical tools to deconvolve the data obtained from use of these technologies is also presented here. These analyses are revealing a more comprehensive and interconnected view of the immune system than ever before and should have an important role in directing future treatment approaches for autoimmune diseases.
doi:10.1038/nrrheum.2012.66
PMCID: PMC3409841  PMID: 22647780
16.  GRAIL: A unique mediator of CD4 T lymphocyte unresponsiveness 
The FEBS journal  2010;278(1):47-58.
GRAIL (gene related to anergy in lymphocytes, also known as RNF128), an ubiquitin-protein ligase (E3), utilizes a unique single transmembrane protein with a split function motif, and is an important gatekeeper of T cell unresponsiveness. While it may play a role in other CD4 T cell functions including activation, survival, and differentiation, GRAIL is most well characterized as a negative regulator of TCR responsiveness and cytokine production. Here, we review the recent literature on this remarkable E3 in the regulation of human and mouse CD4 T cell unresponsiveness.
doi:10.1111/j.1742-4658.2010.07922.x
PMCID: PMC3058357  PMID: 21078124
GRAIL; E3; ubiquitin-protein ligase; anergy; T cell unresponsiveness; ubiquitination; de-ubiquitinating enzymes (DUBs)
17.  Deaf1 isoforms control the expression of genes encoding peripheral tissue antigens in the pancreatic lymph nodes during type 1 diabetes 
Nature immunology  2009;10(9):1026-1033.
Type 1 diabetes (T1D) may result from a breakdown in peripheral tolerance that is partially controlled by peripheral tissue antigen (PTA) expression in lymph nodes. Here we show that the transcriptional regulator deformed epidermal autoregulatory factor 1 (Deaf1) controls PTA gene expression in the pancreatic lymph nodes (PLN). The expression of canonical Deaf1 was reduced, while that of an alternatively spliced variant was increased during the onset of destructive insulitis in the PLN of NOD mice. An equivalent variant Deaf1 isoform was identified in the PLN of T1D patients. Both NOD and human Deaf1 variant isoforms suppressed PTA expression by inhibiting the transcriptional activity of canonical Deaf1. Reduced PTA expression resulting from the alternative splicing of Deaf1 may contribute to T1D pathogenesis.
doi:10.1038/ni.1773
PMCID: PMC2752139  PMID: 19668219
18.  High Cell Surface Expression of CD4 Allows Distinction of CD4+CD25+ Antigen-specific Effector T Cells from CD4+CD25+ Regulatory T Cells in Murine Experimental Autoimmune Encephalomyelitis 
Journal of neuroimmunology  2007;192(1-2):57-67.
Analysis of T regulatory cells (Treg) and T effector cells (Teff) in experimental autoimmune encephalomyelitis is complicated by the fact that both cell types express CD4 and CD25. We demonstrate that encephalitogenic T cells, following antigen recognition, up regulate cell surface expression of CD4. The CD4high sub-population contains all of the antigen response as shown by proliferation and cytokine secretion, and only these cells are capable of transferring EAE to naive animals. On the other hand, a FACS separable CD25+ sub-population of cells displayed consistent levels of CD4 prior to and after antigen stimulation. These cells displayed characteristics of Treg, such as expressing high levels of the Foxp3 gene and the ability to suppress mitogenic T cell responses.
doi:10.1016/j.jneuroim.2007.09.004
PMCID: PMC2212588  PMID: 17920698
Experimental autoimmune encephalomyelitis; CD4; CD25; T cells; cellular proliferation; FACS; Treg
19.  Scratching the (T cell) surface 
Genome Biology  2003;5(1):202.
Using a genome-scale approach to study transcription levels in a human CD8+ T-cell clone, a recent study has suggested that the repertoire of molecules on the surface of T cells is close to being completely characterized.
Using a genome-scale approach to study transcription levels in a human CD8+ T-cell clone, a recent study has suggested that the repertoire of molecules on the surface of T cells is close to being completely characterized.
PMCID: PMC395726  PMID: 14709166
20.  The CD8α+ Dendritic Cell Is Responsible for Inducing Peripheral Self-Tolerance to Tissue-associated Antigens 
The Journal of Experimental Medicine  2002;196(8):1099-1104.
We previously described a mechanism for the maintenance of peripheral self-tolerance. This involves the cross-presentation of tissue-associated antigens by a bone marrow–derived cell type that stimulates the proliferation and ultimate deletion of self-reactive CD8 T cells. This process has been referred to as cross-tolerance. Here, we characterize the elusive cell type responsible for inducing cross-tolerance as a CD8α+ dendritic cell (DC). To achieve this aim, transgenic mice were generated expressing yellow fluorescent protein (YFP) linked to CTL epitopes for ovalbumin and glycoprotein B (gB) of herpes simplex virus under the rat insulin promoter (RIP). Although tracking of YFP was inconclusive, the use of a highly sensitive gB-specific hybridoma that produced β-galactosidase on encounter with antigen, enabled detection of antigen presentation by cells isolated from the pancreatic lymph node. This showed that a CD11c+CD8α+ cell was responsible for cross-tolerance, the same DC subset as previously implicated in cross-priming. These data indicate that CD8α+ DCs play a critical role in both tolerance and immunity to cell-associated antigens, providing a potential mechanism by which cytotoxic T lymphocyte can be immunized to viral antigens while maintaining tolerance to self.
doi:10.1084/jem.20020861
PMCID: PMC2194045  PMID: 12391021
antigen presentation; cross-tolerance; CD8+ T cells; dendritic cells; cross-presentation
21.  Donor-type CD4+CD25+ Regulatory T Cells Suppress Lethal Acute Graft-Versus-Host Disease after Allogeneic Bone Marrow Transplantation 
Acute graft-versus-host disease (aGVHD) is still a major obstacle in clinical allogeneic bone marrow (BM) transplantation. CD4+CD25+ regulatory T (Treg) cells have recently been shown to suppress proliferative responses of CD4+CD25− T cells to alloantigenic stimulation in vitro and are required for ex vivo tolerization of donor T cells, which results in their reduced potential to induce aGVHD. Here we show that CD4+CD25+ T cells isolated from the spleen or BM of donor C57BL/6 (H-2b) mice that have not been tolerized are still potent inhibitors of the alloresponse in vitro and of lethal aGVHD induced by C57BL/6 CD4+CD25− T cells in irradiated BALB/c (H-2d) hosts in vivo. The addition of the CD4+CD25+ Treg cells at a 1:1 ratio with responder/inducer CD4+CD25− T cells resulted in a >90% inhibition of the mixed leukocyte reaction and marked protection from lethal GVHD. This protective effect depended in part on the ability of the transferred CD4+CD25+ T cells to secrete interleukin 10 and occurred if the Treg cells were of donor, but not host, origin. Our results demonstrate that the balance of donor-type CD4+CD25+ Treg and conventional CD4+CD25− T cells can determine the outcome of aGVHD.
doi:10.1084/jem.20020399
PMCID: PMC2193938  PMID: 12163567
immune regulation; T lymphocytes; IL-10; mixed leukocyte reaction; alloimmunity
22.  T Cell Receptor (Tcr)-Mediated Repertoire Selection and Loss of Tcr Vβ Diversity during the Initiation of a Cd4+ T Cell Response in Vivo 
The Journal of Experimental Medicine  2000;192(12):1719-1730.
We recently described a novel way to isolate populations of antigen-reactive CD4+ T cells with a wide range of reactivity to a specific antigen, using immunization with a fixed dose of nominal antigen and FACS® sorting by CD4high expression. Phenotypic, FACS®, functional, antibody inhibition, and major histocompatibility complex–peptide tetramer analyses, as well as T cell receptor Vβ sequence analyses, of the antigen-specific CD4high T cell populations demonstrated that a diverse sperm whale myoglobin 110–121–reactive CD4+ T cell repertoire was activated at the beginning (day 3 after immunization) of the immune response. Within 6 d of immunization, lower affinity clones were lost from the responding population, leaving an expanded population of oligoclonal, intermediate affinity (and residual high affinity) T cells. This T cell subset persisted for at least 4 wk after immunization and dominated the secondary immune response. These data provide evidence that CD4+ T cell repertoire selection occurs early in the immune response in vivo and suggest that persistence and expansion of a population of oligoclonal, intermediate affinity T cells is involved in CD4+ T cell memory.
PMCID: PMC2213496  PMID: 11120769
T cells; clonal selection; T cell receptor; major histocompatibility complex class II tetramers; immune response

Results 1-23 (23)