Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
Nature medicine  2009;15(2):206-210.
Uncontrolled TNF-α synthesis is known to play an important role in numerous inflammatory disorders, and multiple transcriptional and post-transcriptional regulatory mechanisms have therefore evolved to dampen the production of this important pro-inflammatory cytokine. By examining the anti-inflammatory properties of the vitamin B3 constituent nicotinamide, we have uncovered a novel regulatory pathway controlling TNF-α production. Exogenous nicotinamide inhibits TNF-α secretion through modulation of mRNA translation efficiency. Moreover, the capacity to produce TNF-α appears to be directly correlated with intracellular NAD levels, suggesting that a NAD-dependent biological event that can be inhibited by nicotinamide controls TNF-α synthesis in cells of the immune system. Sirtuins represent NAD-dependent deacetylases involved in regulation of gene expression in both mammals and yeasts, and are known to be inhibited by nicotinamide. We demonstrate herein that similarly to nicotinamide, structurally unrelated sirtuin inhibitors downregulate TNF-α secretion with minimal effect on TNF-α gene transcription. By over-expressing individual sirtuin members in cell lines transiently expressing TNF-α, we have identified SIRT6 as a sirtuin member able to upregulate TNF-α synthesis in vitro. In agreement with this finding, bone-marrow derived dendritic cells from SIRT6 KO mice display reduced TNF-α synthesis in response to CpG. Collectively, these data delineate a novel relationship between metabolism and the inflammatory response, by uncovering the role of SIRT6 in the control of TNF-α secretion.
PMCID: PMC2845476  PMID: 19151729
2.  Pharmacological Inhibition of Nicotinamide Phosphoribosyltransferase/Visfatin Enzymatic Activity Identifies a New Inflammatory Pathway Linked to NAD 
PLoS ONE  2008;3(5):e2267.
Nicotinamide phosphoribosyltransferase (NAMPT), also known as visfatin, is the rate-limiting enzyme in the salvage pathway of NAD biosynthesis from nicotinamide. Since its expression is upregulated during inflammation, NAMPT represents a novel clinical biomarker in acute lung injury, rheumatoid arthritis, and Crohn's disease. However, its role in disease progression remains unknown. We report here that NAMPT is a key player in inflammatory arthritis. Increased expression of NAMPT was confirmed in mice with collagen-induced arthritis, both in serum and in the arthritic paw. Importantly, a specific competitive inhibitor of NAMPT effectively reduced arthritis severity with comparable activity to etanercept, and decreased pro-inflammatory cytokine secretion in affected joints. Moreover, NAMPT inhibition reduced intracellular NAD concentration in inflammatory cells and circulating TNFα levels during endotoxemia in mice. In vitro pharmacological inhibition of NAMPT reduced the intracellular concentration of NAD and pro-inflammatory cytokine secretion by inflammatory cells. Thus, NAMPT links NAD metabolism to inflammatory cytokine secretion by leukocytes, and its inhibition might therefore have therapeutic efficacy in immune-mediated inflammatory disorders.
PMCID: PMC2377336  PMID: 18493620
3.  A pilot study of IL-1 inhibition by anakinra in acute gout 
Monosodium urate crystals stimulate monocytes and macrophages to release IL-1β through the NALP3 component of the inflammasome. The effectiveness of IL-1 inhibition in hereditary autoinflammatory syndromes with mutations in the NALP3 protein suggested that IL-1 inhibition might also be effective in relieving the inflammatory manifestations of acute gout. The effectiveness of IL-1 inhibition was first evaluated in a mouse model of monosodium urate crystal-induced inflammation. IL-1 inhibition prevented peritoneal neutrophil accumulation but TNF blockade had no effect. Based on these findings, we performed a pilot, open-labeled study (trial registration number ISRCTN10862635) in 10 patients with gout who could not tolerate or had failed standard antiinflammatory therapies. All patients received 100 mg anakinra daily for 3 days. All 10 patients with acute gout responded rapidly to anakinra. No adverse effects were observed. IL-1 blockade appears to be an effective therapy for acute gouty arthritis. The clinical findings need to be confirmed in a controlled study.
PMCID: PMC1906806  PMID: 17352828
4.  CD8α+ and CD8α− Subclasses of Dendritic Cells Direct the Development of Distinct T Helper Cells In Vivo  
Cells of the dendritic family display some unique properties that confer to them the capacity to sensitize naive T cells in vitro and in vivo. In the mouse, two subclasses of dendritic cells (DCs) have been described that differ by their CD8α expression and their localization in lymphoid organs. The physiologic function of both cell populations remains obscure. Studies conducted in vitro have suggested that CD8α+ DCs could play a role in the regulation of immune responses, whereas conventional CD8α− DCs would be more stimulatory. We report here that both subclasses of DCs efficiently prime antigen-specific T cells in vivo, and direct the development of distinct T helper (Th) populations. Antigen-pulsed CD8α+ and CD8α− DCs are separated after overnight culture in recombinant granulocyte/macrophage colony-stimulating factor and injected into the footpads of syngeneic mice. Administration of CD8α− DCs induces a Th2-type response, whereas injection of CD8α+ DCs leads to Th1 differentiation. We further show that interleukin 12 plays a critical role in Th1 development by CD8α+ DCs. These findings suggest that the nature of the DC that presents the antigen to naive T cells may dictate the class selection of the adaptative immune response.
PMCID: PMC2192907  PMID: 9927520
primary response; T helper cell type 1/type 2 balance; interleukin 12; tolerance; memory

Results 1-4 (4)