PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-10 (10)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Contrasting frequencies of antitumor and anti-vaccine T cells in metastases of a melanoma patient vaccinated with a MAGE tumor antigen 
Melanoma patients have high frequencies of T cells directed against antigens of their tumor. The frequency of these antitumor T cells in the blood is usually well above that of the anti-vaccine T cells observed after vaccination with tumor antigens. In a patient vaccinated with a MAGE-3 antigen presented by HLA-A1, we measured the frequencies of anti-vaccine and antitumor T cells in several metastases to evaluate their respective potential contribution to tumor rejection. The frequency of anti–MAGE-3.A1 T cells was 1.5 × 10−5 of CD8 T cells in an invaded lymph node, sixfold higher than in the blood. An antitumor cytotoxic T lymphocyte (CTL) recognizing a MAGE-C2 antigen showed a much higher enrichment with a frequency of ∼10%, 1,000 times higher than its blood frequency. Several other antitumor T clonotypes had frequencies >1%. Similar findings were made on a regressing cutaneous metastasis. Thus, antitumor T cells were ∼10,000 times more frequent than anti-vaccine T cells inside metastases, representing the majority of T cells present there. This suggests that the anti-vaccine CTLs are not the effectors that kill the bulk of the tumor cells, but that their interaction with the tumor generates conditions enabling the stimulation of large numbers of antitumor CTLs that proceed to destroy the tumor cells. Naive T cells appear to be stimulated in the course of this process as new antitumor clonotypes arise after vaccination.
doi:10.1084/jem.20041378
PMCID: PMC2212799  PMID: 15657294
2.  High frequency of antitumor T cells in the blood of melanoma patients before and after vaccination with tumor antigens 
After vaccination of melanoma patients with MAGE antigens, we observed that even in the few patients showing tumor regression, the frequency of anti-vaccine T cells in the blood was often either undetectable or <10−5 of CD8 T cells. This frequency being arguably too low for these cells to be sole effectors of rejection, we reexamined the contribution of T cells recognizing other tumor antigens. The presence of such antitumor T cells in melanoma patients has been widely reported. To begin assessing their contribution to vaccine-induced rejection, we evaluated their blood frequency in five vaccinated patients. The antitumor cytotoxic T lymphocyte (CTL) precursors ranged from 10−4 to 3 × 10−3, which is 10–10,000 times higher than the anti-vaccine CTL in the same patient. High frequencies were also observed before vaccination. In a patient showing nearly complete regression after vaccination with a MAGE-3 antigen, we observed a remarkably focused antitumoral response. A majority of CTL precursors (CTLp's) recognized antigens encoded by MAGE-C2, another cancer-germline gene. Others recognized gp100 antigens. CTLp's recognizing MAGE-C2 and gp100 antigens were already present before vaccination, but new clonotypes appeared afterwards. These results suggest that a spontaneous antitumor T cell response, which has become ineffective, can be reawakened by vaccination and contribute to tumor rejection. This notion is reinforced by the frequencies of anti-vaccine and antitumor CTLs observed inside metastases, as presented by Lurquin et al. (Lurquin, C., B. Lethé, V. Corbière, I. Théate, N. van Baren, P.G. Coulie, and T. Boon. 2004. J. Exp. Med. 201:249–257).
doi:10.1084/jem.20041379
PMCID: PMC2212796  PMID: 15657293
3.  MAGE-A1 interacts with adaptor SKIP and the deacetylase HDAC1 to repress transcription 
Nucleic Acids Research  2004;32(14):4340-4350.
MAGE-A1 belongs to a family of 12 genes that are active in various types of tumors and silent in normal tissues except in male germ-line cells. The MAGE-encoded antigens recognized by T cells are highly tumor-specific targets for T cell-oriented cancer immunotherapy. The function of MAGE-A1 is currently unknown. To analyze it, we attempted to identify protein partners of MAGE-A1. Using yeast two-hybrid screening, we detected an interaction between MAGE-A1 and Ski Interacting Protein (SKIP). SKIP is a transcriptional regulator that connects DNA-binding proteins to proteins that either activate or repress transcription. We show that MAGE-A1 inhibits the activity of a SKIP-interacting transactivator, namely the intracellular part of Notch1. Deletion analysis indicated that this inhibition requires the binding of MAGE-A1 to SKIP. Moreover, MAGE-A1 was found to actively repress transcription by binding and recruiting histone deacetylase 1 (HDAC1). Our results indicate that by binding to SKIP and by recruiting HDACs, MAGE-A1 can act as a potent transcriptional repressor. MAGE-A1 could therefore participate in the setting of specific gene expression patterns for tumor cell growth or spermatogenesis.
doi:10.1093/nar/gkh735
PMCID: PMC514365  PMID: 15316101
4.  Promoter-Dependent Mechanism Leading to Selective Hypomethylation within the 5′ Region of Gene MAGE-A1 in Tumor Cells 
Molecular and Cellular Biology  2004;24(11):4781-4790.
Several male germ line-specific genes, including MAGE-A1, rely on DNA methylation for their repression in normal somatic tissues. These genes become activated in many types of tumors in the course of the genome-wide demethylation process which often accompanies tumorigenesis. We show that in tumor cells expressing MAGE-A1, the 5′ region is significantly less methylated than the other parts of the gene. The process leading to this site-specific hypomethylation does not appear to be permanent in these tumor cells, since in vitro-methylated MAGE-A1 sequences do not undergo demethylation after being stably transfected. However, in these cells there is a process that inhibits de novo methylation within the 5′ region of MAGE-A1, since unmethylated MAGE-A1 transgenes undergo remethylation at all CpGs except those located within the 5′ region. This local inhibition of methylation appears to depend on promoter activity. We conclude that the site-specific hypomethylation of MAGE-A1 in tumor cells relies on a transient process of demethylation followed by a persistent local inhibition of remethylation due to the presence of transcription factors.
doi:10.1128/MCB.24.11.4781-4790.2004
PMCID: PMC416434  PMID: 15143172
5.  The Production of a New MAGE-3 Peptide Presented to Cytolytic T Lymphocytes by HLA-B40 Requires the Immunoproteasome 
By stimulating human CD8+ T lymphocytes with autologous dendritic cells infected with an adenovirus encoding MAGE-3, we obtained a cytotoxic T lymphocyte (CTL) clone that recognized a new MAGE-3 antigenic peptide, AELVHFLLL, which is presented by HLA-B40. This peptide is also encoded by MAGE-12. The CTL clone recognized MAGE-3–expressing tumor cells only when they were first treated with IFN-γ. Since this treatment is known to induce the exchange of the three catalytic subunits of the proteasome to form the immunoproteasome, this result suggested that the processing of this MAGE-3 peptide required the immunoproteasome. Transfection experiments showed that the substitution of β5i (LMP7) for β5 is necessary and sufficient for producing the peptide, whereas a mutated form of β5i (LMP7) lacking the catalytically active site was ineffective. Mass spectrometric analyses of in vitro digestions of a long precursor peptide with either proteasome type showed that the immunoproteasome produced the antigenic peptide more efficiently, whereas the standard proteasome more efficiently introduced cleavages destroying the antigenic peptide. This is the first example of a tumor-specific antigen exclusively presented by tumor cells expressing the immunoproteasome.
doi:10.1084/jem.20011974
PMCID: PMC2193621  PMID: 11854353
β5i; proteasome; mass spectrometry; tumor; HLA-B40
6.  An Alternative Open Reading Frame of the Human Macrophage Colony-Stimulating Factor Gene Is Independently Translated and Codes for an Antigenic Peptide of 14 Amino Acids Recognized by Tumor-Infiltrating Cd8 T Lymphocytes 
The Journal of Experimental Medicine  2001;193(10):1189-1198.
We show that cytotoxic T lymphocytes (CTLs) infiltrating a kidney tumor recognize a peptide encoded by an alternative open reading frame (ORF) of the macrophage colony-stimulating factor (M-CSF) gene. Remarkably, this alternative ORF, which is translated in many tumors concurrently with the major ORF, is also translated in some tissues that do not produce M-CSF, such as liver and kidney. Such a dissociation of the translation of two overlapping ORFs from the same gene is unexpected. The antigenic peptide encoded by the alternative ORF is presented by human histocompatibility leukocyte antigen (HLA)-B*3501 and has a length of 14 residues. Peptide elution indicated that tumor cells naturally present this 14 mer, which is the longest peptide known to be recognized by CTLs. Binding studies of peptide analogues suggest that it binds by its two extremities and bulges out of the HLA groove to compensate for its length.
PMCID: PMC2193327  PMID: 11369790
renal cell carcinoma; HLA-B35; translation; peptide binding; natural peptide
7.  A New Antigen Recognized by Cytolytic T Lymphocytes on a Human Kidney Tumor Results from Reverse Strand Transcription 
The Journal of Experimental Medicine  1999;190(12):1793-1800.
By stimulating blood lymphocytes from a renal cell carcinoma patient in vitro with the autologous tumor cells, we obtained cytolytic T lymphocyte (CTL) clones that killed several autologous and allogeneic histocompatibility leukocyte antigen (HLA)-B7 renal carcinoma cell lines. We identified the target antigen of these CTLs by screening COS cells transfected with the HLA-B7 cDNA and with a cDNA library prepared with RNA from the tumor cells. The antigenic peptide recognized by the CTLs has the sequence LPRWPPPQL and is encoded by a new gene, which we named RU2. This gene is transcribed in both directions. The antigenic peptide is not encoded by the sense transcript, RU2S, which is expressed ubiquitously. It is encoded by an antisense transcript, RU2AS, which starts from a cryptic promoter located on the reverse strand of the first intron and ends up on the reverse strand of the RU2S promoter, which contains a polyadenylation signal. This mechanism of antigen expression is unprecedented and further illustrates the notion that many peptides recognized by T cells cannot be predicted from the primary structure of the major product of the encoding gene. Antisense transcript RU2AS is expressed in a high proportion of tumors of various histological types. It is absent in most normal tissues, but is expressed in testis and kidney, and, at lower levels, in urinary bladder and liver. Short-term cultures of normal epithelial cells from the renal proximal tubule expressed significant levels of RU2AS message and were recognized by the CTLs. Therefore, this antigen is not tumor specific, but corresponds to a self-antigen with restricted tissue distribution.
PMCID: PMC2195717  PMID: 10601354
renal cell carcinoma; cytolytic T lymphocytes; antisense; peptides
8.  DNA Methylation Is the Primary Silencing Mechanism for a Set of Germ Line- and Tumor-Specific Genes with a CpG-Rich Promoter 
Molecular and Cellular Biology  1999;19(11):7327-7335.
A subset of male germ line-specific genes, the MAGE-type genes, are activated in many human tumors, where they produce tumor-specific antigens recognized by cytolytic T lymphocytes. Previous studies on gene MAGE-A1 indicated that transcription factors regulating its expression are present in all tumor cell lines whether or not they express the gene. The analysis of two CpG sites located in the promoter showed a strong correlation between expression and demethylation. It was also shown that MAGE-A1 transcription was induced in cell cultures treated with demethylating agent 5′-aza-2′-deoxycytidine. We have now analyzed all of the CpG sites within the 5′ region of MAGE-A1 and show that for all of them, demethylation correlates with the transcription of the gene. We also show that the induction of MAGE-A1 with 5′-aza-2′-deoxycytidine is stable and that in all the cell clones it correlates with demethylation, indicating that demethylation is necessary and sufficient to produce expression. Conversely, transfection experiments with in vitro-methylated MAGE-A1 sequences indicated that heavy methylation suffices to stably repress the gene in cells containing the transcription factors required for expression. Most MAGE-type genes were found to have promoters with a high CpG content. Remarkably, although CpG-rich promoters are classically unmethylated in all normal tissues, those of MAGE-A1 and LAGE-1 were highly methylated in somatic tissues. In contrast, they were largely unmethylated in male germ cells. We conclude that MAGE-type genes belong to a unique subset of germ line-specific genes that use DNA methylation as a primary silencing mechanism.
PMCID: PMC84726  PMID: 10523621
9.  Identification of MAGE-3 Epitopes Presented by HLA-DR Molecules to CD4+ T Lymphocytes  
MAGE-type genes are expressed by many tumors of different histological types and not by normal cells, except for male germline cells, which do not express major histocompatibility complex (MHC) molecules. Therefore, the antigens encoded by MAGE-type genes are strictly tumor specific and common to many tumors. We describe here the identification of the first MAGE-encoded epitopes presented by histocompatibility leukocyte antigen (HLA) class II molecules to CD4+ T lymphocytes. Monocyte-derived dendritic cells were loaded with a MAGE-3 recombinant protein and used to stimulate autologous CD4+ T cells. We isolated CD4+ T cell clones that recognized two different MAGE-3 epitopes, MAGE-3114–127 and MAGE-3121–134, both presented by the HLA-DR13 molecule, which is expressed in 20% of Caucasians. The second epitope is also encoded by MAGE-1, -2, and -6. Our procedure should be applicable to other proteins for the identification of new tumor-specific antigens presented by HLA class II molecules. The knowledge of such antigens will be useful for evaluation of the immune response of cancer patients immunized with proteins or with recombinant viruses carrying entire genes coding for tumor antigens. The use of antigenic peptides presented by class II in addition to peptides presented by class I may also improve the efficacy of therapeutic antitumor vaccination.
PMCID: PMC2192951  PMID: 10049940
human; invariant chain; peptide; tumor; histocompatibility leukocyte antigen class II
10.  A CASP-8 Mutation Recognized by Cytolytic T Lymphocytes on a Human Head and Neck Carcinoma  
Of the antigens recognized on human tumors by autologous cytolytic T lymphocytes, all those defined thus far have been identified on melanoma or renal cell carcinoma. We report here the identification of an antigen recognized by autologous cytolytic T lymphocytes on a human squamous cell carcinoma of the oral cavity. The antigen is encoded by a mutated form of the CASP-8 gene. This gene, also named FLICE or MACH, codes for protease caspase-8, which is required for induction of apoptosis through the Fas receptor and tumor necrosis factor receptor-1. The mutation, which was found in the tumor cells but not in the normal cells of the patient, modifies the stop codon and adds an Alu repeat to the coding region, thereby lengthening the protein by 88 amino acids. The ability of the altered protein to trigger apoptosis appears to be reduced relative to the normal caspase-8. The antigenic peptide is a nonamer presented by HLA-B*3503. The five last amino acids are encoded by the extension of the reading frame caused by the mutation. This, together with previous observations of CDK4 and β-catenin mutations, suggests that a significant fraction of the point mutations generating a tumor antigen also play a role in the tumoral transformation or progression.
PMCID: PMC2199018  PMID: 9271594

Results 1-10 (10)