Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Major Subsets of Human Dendritic Cells Are Efficiently Transduced by Self-Complementary Adeno-Associated Virus Vectors 1 and 2▿  
Journal of Virology  2007;81(10):5385-5394.
Dendritic cells (DC) are antigen-presenting cells pivotal for inducing immunity or tolerance. Gene transfer into DC is an important strategy for developing immunotherapeutic approaches against infectious pathogens and cancers. One of the vectors previously described for the transduction of human monocytes or DC is the recombinant adeno-associated virus (rAAV), with a genome conventionally packaged as a single-stranded (ss) molecule. Nevertheless, its use is limited by the poor and variable transduction efficiency of DC. In this study, AAV type 1 (AAV1) and AAV2 vectors, which expressed the enhanced green fluorescent protein and were packaged as ss or self-complementary (sc) duplex strands, were used to transduce different DC subsets generated ex vivo and the immunophenotypes, states of differentiation, and functions of the subsets were carefully examined. We show here for the first time that a single exposure of monocytes (Mo) or CD34+ progenitors (CD34) to sc rAAV1 or sc rAAV2 leads to high transduction levels (5 to 59%) of differentiated Mo-DC, Mo-Langerhans cells (LC), CD34-LC, or CD34-plasmacytoid DC (pDC), with no impact on their phenotypes and functional maturation of these cells, compared to those of exposure to ss rAAV. Moreover, we show that all these DC subpopulations can also be efficiently transduced after commitment to their differentiation pathways. Furthermore, these DC subsets transduced with sc rAAV1 expressing a tumor antigen were potent activators of a CD8+-T-cell clone. Altogether, these results show the high potential of sc AAV1 and sc AAV2 vectors to transduce ex vivo conventional DC, LC, or pDC or to directly target them in vivo for the design of new DC-based immunotherapies.
PMCID: PMC1900227  PMID: 17314166
2.  CD4+CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor–β–dependent manner 
The Journal of Experimental Medicine  2005;202(8):1075-1085.
Tumor growth promotes the expansion of CD4+CD25+ regulatory T (T reg) cells that counteract T cell–mediated immune responses. An inverse correlation between natural killer (NK) cell activation and T reg cell expansion in tumor-bearing patients, shown here, prompted us to address the role of T reg cells in controlling innate antitumor immunity. Our experiments indicate that human T reg cells expressed membrane-bound transforming growth factor (TGF)–β, which directly inhibited NK cell effector functions and down-regulated NKG2D receptors on the NK cell surface. Adoptive transfer of wild-type T reg cells but not TGF-β−/− T reg cells into nude mice suppressed NK cell–mediated cytotoxicity, reduced NKG2D receptor expression, and accelerated the growth of tumors that are normally controlled by NK cells. Conversely, the depletion of mouse T reg cells exacerbated NK cell proliferation and cytotoxicity in vivo. Human NK cell–mediated tumor recognition could also be restored by depletion of T reg cells from tumor-infiltrating lymphocytes. These findings support a role for T reg cells in blunting the NK cell arm of the innate immune system.
PMCID: PMC2213209  PMID: 16230475
3.  Novel mode of action of c-kit tyrosine kinase inhibitors leading to NK cell–dependent antitumor effects 
Journal of Clinical Investigation  2004;114(3):379-388.
Mutant isoforms of the KIT or PDGF receptors expressed by gastrointestinal stromal tumors (GISTs) are considered the therapeutic targets for STI571 (imatinib mesylate; Gleevec), a specific inhibitor of these tyrosine kinase receptors. Case reports of clinical efficacy of Gleevec in GISTs lacking the typical receptor mutations prompted a search for an alternate mode of action. Here we show that Gleevec can act on host DCs to promote NK cell activation. DC-mediated NK cell activation was triggered in vitro and in vivo by treatment of DCs with Gleevec as well as by a loss-of-function mutation of KIT. Therefore, tumors that are refractory to the antiproliferative effects of Gleevec in vitro responded to Gleevec in vivo in an NK cell–dependent manner. Longitudinal studies of Gleevec-treated GIST patients revealed a therapy-induced increase in IFN-γ production by NK cells, correlating with an enhanced antitumor response. These data point to a novel mode of antitumor action for Gleevec.
PMCID: PMC489961  PMID: 15286804
4.  Patterns of Genomic Sequence Diversity among Their Simian Immunodeficiency Viruses Suggest that L'Hoest Monkeys (Cercopithecus lhoesti) Are a Natural Lentivirus Reservoir 
Journal of Virology  2000;74(8):3892-3898.
Recently, we described a novel simian immunodeficiency virus (SIVlhoest) from a wild-caught L'Hoest monkey (Cercopithecus lhoesti) from a North American zoo. To investigate whether L'Hoest monkeys are the natural host for these viruses, we have screened blood samples from 14 wild animals from the Democratic Republic of Congo. Eight (57%) were found to be seropositive for SIV. Nearly full-length genome sequences were obtained for SIV isolates from three of these monkeys and compared to the original isolate and to other SIVs. The four samples of SIVlhoest formed a distinct cluster in phylogenetic trees. Two of these isolates differed on average at only about 5% of nucleotides, suggesting that they were epidemiologically linked; otherwise, the SIVlhoest isolates differed on average by 18%. Both the level of diversity and the pattern of its variation along the genome were very similar to those seen among isolates of SIVagm from vervet monkeys, pointing to similarities in the nature of, and constraints on, SIV evolution in these two species. Discordant phylogenetic relationships among the SIVlhoest isolates for different genomic regions indicated that mosaic viruses have been generated by recombination, implying that individual monkeys have been coinfected by more than one strain of SIV. Taken together, these observations provide strong evidence that L'Hoest monkeys constitute a natural reservoir for SIV.
PMCID: PMC111899  PMID: 10729165

Results 1-4 (4)