PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Impaired OXPHOS Complex III in Breast Cancer 
PLoS ONE  2011;6(8):e23846.
We measured the mitochondrial oxidative phosphorylation (mtOXPHOS) activities of all five complexes and determined the activity and gene expression in detail of the Complex III subunits in human breast cancer cell lines and primary tumors. Our analysis revealed dramatic differences in activity of complex III between normal and aggressive metastatic breast cancer cell lines. Determination of Complex III subunit gene expression identified over expression and co-regulation of UQCRFS1 (encoding RISP protein) and UQCRH (encoding Hinge protein) in 6 out of 9 human breast tumors. Analyses of UQCRFS1/RISP expression in additional matched normal and breast tumors demonstrated an over expression in 14 out of 40 (35%) breast tumors. UQCRFS1/RISP knockdown in breast tumor cell line led to decreased mitochondrial membrane potential as well as a decrease in matrigel invasion. Furthermore, reduced matrigel invasion was mediated by reduced ROS levels coinciding with decreased expression of NADPH oxidase 2, 3, 4 and 5 involved in ROS production. These studies provide direct evidence for contribution of impaired mtOXPHOS Complex III to breast tumorigenesis.
doi:10.1371/journal.pone.0023846
PMCID: PMC3162009  PMID: 21901141
2.  Epilepsia partialis continua in mitochondrial dysfunction: Interesting phenotypic and MRI observations 
An 11-year-old girl manifested with photophobia, ptosis, external ophthalmoplegia, hypotonia, weakness of proximal limb muscles, hyporeflexia, and generalized seizures (six months). Her elder sister had had uncontrolled seizures and photophobia and died at seven years of age. In the patient, serum lactate was high (55 mg/dl). Muscle biopsy revealed characteristic ragged red and ragged blue fibers, diagnostic of mitochondrial cytopathy. Sequencing of the complete mitochondrial genome of the DNA obtained from the muscle biopsy of the patient did not show any characteristic mutation. Four months later, the girl was admitted with a one-week history of epilepsia partialis continua (EPC). EEG revealed Periodic Lateralized Epileptiform Discharges (PLEDs), once in 2-4 seconds, over the right temporo-occipital leads. MRI revealed signal change of right motor cortex, which had restricted diffusion. MR spectroscopy (MRS) from this region revealed lactate peak. EPC remained refractory to multiple anti-epileptic drugs, immuno-modulators, coenzyme-Q, and carnitine. This thought provoking report expands the spectrum of mitochondrial cytopathies.
doi:10.4103/0972-2327.42942
PMCID: PMC2771970  PMID: 19893669
Chronic progressive external ophtalmoplegia; epilepsia partialis continua; mitochondrial dysfunction; Mitochondrial Encephalopathy with Ragged Red Fiber; MRI; periodic lateralized epileptiform discharges
3.  In situ origin of deep rooting lineages of mitochondrial Macrohaplogroup 'M' in India 
BMC Genomics  2006;7:151.
Background
Macrohaplogroups 'M' and 'N' have evolved almost in parallel from a founder haplogroup L3. Macrohaplogroup N in India has already been defined in previous studies and recently the macrohaplogroup M among the Indian populations has been characterized. In this study, we attempted to reconstruct and re-evaluate the phylogeny of Macrohaplogroup M, which harbors more than 60% of the Indian mtDNA lineage, and to shed light on the origin of its deep rooting haplogroups.
Results
Using 11 whole mtDNA and 2231 partial coding sequence of Indian M lineage selected from 8670 HVS1 sequences across India, we have reconstructed the tree including Andamanese-specific lineage M31 and calculated the time depth of all the nodes. We defined one novel haplogroup M41, and revised the classification of haplogroups M3, M18, and M31.
Conclusion
Our result indicates that the Indian mtDNA pool consists of several deep rooting lineages of macrohaplogroup 'M' suggesting in-situ origin of these haplogroups in South Asia, most likely in the India. These deep rooting lineages are not language specific and spread over all the language groups in India. Moreover, our reanalysis of the Andamanese-specific lineage M31 suggests population specific two clear-cut subclades (M31a1 and M31a2). Onge and Jarwa share M31a1 branch while M31a2 clade is present in only Great Andamanese individuals. Overall our study supported the one wave, rapid dispersal theory of modern humans along the Asian coast.
doi:10.1186/1471-2164-7-151
PMCID: PMC1534032  PMID: 16776823

Results 1-3 (3)