Search tips
Search criteria

Results 1-10 (10)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
author:("tiwari, pufa")
1.  Association of Interleukin-18 Gene Polymorphism with Susceptibility to Visceral Leishmaniasis in Endemic Area of Bihar, an Indian Population 
The Scientific World Journal  2014;2014:852104.
Interleukin-18 (IL-18) is a cytokine that mediates Th1 response by inducing interferon-gamma (IFN-γ) production in T cells and natural killer cells. Genetic polymorphisms in the IL-18 gene have been found to be associated with its expression in cancer, tuberculosis, HBV infection, and various other diseases. Lower plasma level of IL-18 in visceral leishmaniasis (VL) patients might be associated with polymorphisms in the regulating or coding region of the gene. Three single nucleotide polymorphisms (SNPs), rs1946519 (−656 G/T) and rs187238 (−137 G/C) in the promoter region and rs549908 (+105 A/C) in the codon region, were genotyped in 204 parasitological confirmed VL patients and 267 controls with no past history of VL. For each locus, polymerase chain reaction (PCR) followed by restriction digestion was performed. IL-18 expression in peripheral blood mononuclear cells (PBMC) collected from VL patients and controls was measured by quantitative real-time RT-PCR. Distribution of G allele at position −656 (P < 0.0001) and double haplotypes GGC/GGA (P = 0.05) were found to be significantly associated with controls while genotypes TT (P < 0.0001) and single haplotypes TGA (P = 0.0002), with cases. The inheritance of G allele at the position −656 might be considered as a protective allele for VL.
PMCID: PMC4227453  PMID: 25405235
2.  Comparative Evaluation of Blood and Serum Samples in Rapid Immunochromatographic Tests for Visceral Leishmaniasis 
Journal of Clinical Microbiology  2013;51(12):3955-3959.
Rapid diagnostic tests (RDTs) based on the detection of specific antibodies in serum are commonly used for the diagnosis of visceral leishmaniasis (VL). Several commercial kits are available, and some of them allow the use of whole-blood samples instead of serum. An RDT is much more user-friendly for blood samples than for serum samples. In this study, we examined the sensitivities and specificities of six different commercially available immunochromatographic tests for their accuracy in detecting Leishmania infection in whole blood and serum of parasitologically confirmed VL cases. This study was performed in areas of India and Nepal where VL is endemic. A total of 177 confirmed VL cases, 208 healthy controls from areas of endemicity (EHCs), 26 malaria patients (MP), and 37 tuberculosis (TB) patients were enrolled. The reproducibilities of the blood and serum results and between-reader and between-laboratory results were tested. In India, the sensitivities of all the RDTs ranged between 94.7 and 100.0%, with no significant differences between whole blood and serum. The specificities ranged between 92.4 and 100.0%, except for the specificity of the Onsite Leishmania Ab RevB kit, which was lower (33.6 to 42.0%). No differences in specificities were observed for blood and serum. In Nepal, the sensitivities of all the test kits, for whole-blood as well as serum samples, ranged between 96.3 and 100.0%, and the specificities ranged between 90.1 and 96.1%, again with the exception of that of the Onsite Leishmania Ab RevB test, which was markedly lower (48.7 to 49.3%). The diagnostic accuracies of all the tests, except for one brand, were excellent for the whole-blood and serum samples. We conclude that whole blood is an adequate alternative for serum in RDTs for VL, with sensitivities and specificities comparable to those obtained in serum samples, provided that the test kit is of overall good quality.
PMCID: PMC3838042  PMID: 24048530
3.  Cloning, Expression and Purification of L. Donovani Specific Antigen for Serodiagnosis of Visceral Leishmaniasis 
Rapid diagnostic test using rk39 antigen is widely used for visceral leishmaniasis. However it detects anti-rk39 antibodies in 20-32% of endemic healthy individuals. In search for a better biomarker of infection, we identified a protein of molecular weight 70 kDa (BHUP1), specifically recognized by sera of visceral leishmaniasis (VL) patients.
The protein was cloned as His-tagged fusion protein and purified. We evaluated the sensitivity and specificity of this protein in an enzyme linked immunosorbant assay (ELISA) format in comparison to the rk39 antigen using sera collected from various groups of individuals.
The sensitivity of rBHUP1 was 96.5% compared to 98.8% with rk39. For healthy controls from non endemic and endemic regions, the specificity of rBHUP1 was 100% and 95.6% compared to 100% and 84.9% for rk39, respectively. For other infectious diseases such as malaria, tuberculosis, viral fever, etc., specificity of rBHUP1 was as low as 74.5% when compared to 94% of rk39. At six month and one year follow-up, 74% and 22.5% patients tested positive with rBHUP1, respectively, compared to 97% and 77.4% with rk39 antigen.
Though the high sensitivity and specificity of rBHUP1 antigen for VL and healthy controls would have made it a good diagnostic biomarkers, however, its non-specific reaction with other infectious diseases limit its utility.
PMCID: PMC4007064  PMID: 24795833
ELISA; rBHUP1; Visceral leishmaniasis; rk39
4.  PCR-RFLP based method for molecular differentiation of sand fly species Phlebotomus argentipes, Phlebotomus papatasi and Sergentomyia babu found in India 
Journal of medical entomology  2012;49(6):1515-1518.
PCR- Restriction fragment length polymorphism (RFLP) is a time saving and accurate technique to differentiate closely related organisms. In the regions endemic for visceral leishmaniasis (VL) in India, various species of morphological similar sand fly exists but only female Phlebotomus argentipes is the vector for VL. In the present study primers were designed targeting the 18S rRNA encoding gene that showed amplification in all the major sand fly species found in India. The amplified fragments were further digested using the Hinf I or Hpa II restriction enzymes. Each of the restriction enzyme produced species specific restriction patterns, which can easily be used to identify specific sand fly species. This technique can be employed in the identification of the species of the sand flies.
PMCID: PMC3533248  PMID: 23270185
18S rRNA; Leishmaniasis; PCR; Phlebotomine; RFLP; Sand fly
5.  Genetic and functional evaluation of the role of DLL1 in susceptibility to visceral leishmaniasis in India 
Chromosome 6q26–27 is linked to susceptibility to visceral leishmaniasis (VL) in Brazil and Sudan. DLL1 encoding the Delta-like 1 ligand for Notch 3 was implicated as the etiological gene. DLL1 belongs to the family of Notch ligands known to selectively drive antigen-specific CD4 T helper 1 cell responses, which are important in protective immune response in leishmaniasis. Here we provide further genetic and functional evidence that supports a role for DLL1 in a well-powered population-based study centred in the largest global focus of VL in India. Twenty-one single nucleotide polymorphisms (SNPs) at PHF10/C6orf70/DLL1/FAM120B/PSMB1/TBP were genotyped in 941 cases and 992 controls. Logistic regression analysis under an additive model showed association between VL and variants at DLL1 and FAM120B, with top associations (rs9460106, OR=1.17, 95%CI 1.01–1.35, P=0.033; rs2103816, OR=1.16, 95%CI 1.01–1.34, P=0.039) robust to analysis using caste as a covariate to take account of population substructure. Haplotype analysis taking population substructure into account identified a common 2-SNP risk haplotype (frequency 0.43; P=0.028) at FAM120B, while the most significant protective haplotype (frequency 0.18; P=0.007) was a 5-SNP haplotype across the interval 5’ of both DLL1 (negative strand) and FAM120B (positive strand) and extending to intron 4 of DLL1. Quantitative RT/PCR was used to compare expression of 6q27 genes in paired pre- and post-treatment splenic aspirates from VL patients (N=19). DLL1 was the only gene to show differential expression that was higher (P<0.0001) in pre- compared to post-treatment samples, suggesting that regulation of gene expression was important in disease pathogenesis. This well-powered genetic and functional study in an Indian population provides evidence supporting DLL1 as the etiological gene contributing to susceptibility to VL at Chromosome 6q27, confirming the potential for polymorphism at DLL1 to act as a genetic risk factor across the epidemiological divides of geography and parasite species.
PMCID: PMC3651914  PMID: 22561395
visceral leishmaniasis; DLL1; genetic association; Notch signalling
6.  Prevalence of Sand Flies and Leishmania donovani Infection in a Natural Population of Female Phlebotomus argentipes in Bihar State, India 
Leishmaniasis is a vector-borne disease, and in the Indian subcontinent the female Phlebotomus argentipes is the vector for Leishmania donovani. However, data on the extent of sand fly infection rates in natural settings using molecular methods have not been extensively reported in India. In this study a PCR technique was applied targeting the 18S rRNA encoding region to determine the prevalence of Leishmania infection in female P. argentipes captured in the field. For this study, sand flies were collected from 897 houses selected from 50 villages endemic for visceral leishmaniasis (VL) in Muzaffarpur district, Bihar state, using CDC miniature light traps and mouth aspirators. A total of 14,585 sand flies were collected of which 449 were female P. argentipes divided into 132 pools. Molecular detection using PCR targeting the 18S rRNA gene was carried out for the identification of P. argentipes and Leishmania. The overall prevalence of infection was 4.90–17.37% for L. donovani in female P. argentipes in endemic regions of Bihar state. In this study no correlation was found between the presence of infected sand flies and the occurrence of clinical VL. This study provides the first report evaluating the prevalence of Leishmania infection in sand flies in a region endemic for VL in India. Sergentomyia species are the most common species of sand fly. Knowledge of the infection rate in female P. argentipes may help in predicting severity of disease and in vector elimination programs.
PMCID: PMC3366094  PMID: 22217179
Leishmania donovani; Phlebotomus argentipes; 18S rRNA; Gene; PCR; Sand fly; Visceral leishmaniasis
7.  Seasonal Variation in the Prevalence of Sand Flies Infected with Leishmania donovani 
PLoS ONE  2013;8(4):e61370.
Visceral Leishmaniasis (VL) is a life threatening neglected infectious disease in the Indian subcontinent, transmitted by the bite of female sand flies. Estimation of the infectivity in the vector population, collected in different seasons, may be useful to better understanding the transmission dynamics of VL as well as to plan vector control measures.
We collected sand flies from highly endemic regions of Bihar state, India for one year over three seasons. The species of the sand flies were confirmed by species-specific PCR-RFLP. Leishmania donovani infection was investigated in 1397 female Phlebotomus argentipes using PCR, targeting the Leishmania specific minicircle of the kDNA region. Further, the parasitic load in the infected sand flies was measured using quantitative PCR.
Though sand flies were most abundant in the rainy season, the highest rate of infection was detected in the winter season with 2.84% sand flies infected followed by the summer and rainy seasons respectively. This study can help in vector elimination programmes and to reduce disease transmission.
PMCID: PMC3621828  PMID: 23585896
8.  Genetic and functional evaluation of the role of CXCR1 and CXCR2 in susceptibility to visceral leishmaniasis in north-east India 
BMC Medical Genetics  2011;12:162.
IL8RA and IL8RB, encoded by CXCR1 and CXCR2, are receptors for interleukin (IL)-8 and other CXC chemokines involved in chemotaxis and activation of polymorphonuclear neutrophils (PMN). Variants at CXCR1 and CXCR2 have been associated with susceptibility to cutaneous and mucocutaneous leishmaniasis in Brazil. Here we investigate the role of CXCR1/CXCR2 in visceral leishmaniasis (VL) in India.
Three single nucleotide polymorphisms (SNPs) (rs4674259, rs2234671, rs3138060) that tag linkage disequilibrium blocks across CXCR1/CXCR2 were genotyped in primary family-based (313 cases; 176 nuclear families; 836 individuals) and replication (941 cases; 992 controls) samples. Family- and population-based analyses were performed to look for association between CXCR1/CXCR2 variants and VL. Quantitative RT/PCR was used to compare CXCR1/CXCR2 expression in mRNA from paired splenic aspirates taken before and after treatment from 19 VL patients.
Family-based analysis using FBAT showed association between VL and SNPs CXCR1_rs2234671 (Z-score = 2.935, P = 0.003) and CXCR1_rs3138060 (Z-score = 2.22, P = 0.026), but not with CXCR2_rs4674259. Logistic regression analysis of the case-control data under an additive model of inheritance showed association between VL and SNPs CXCR2_rs4674259 (OR = 1.15, 95%CI = 1.01-1.31, P = 0.027) and CXCR1_rs3138060 (OR = 1.25, 95%CI = 1.02-1.53, P = 0.028), but not with CXCR1_rs2234671. The 3-locus haplotype T_G_C across these SNPs was shown to be the risk haplotype in both family- (TRANSMIT; P = 0.014) and population- (OR = 1.16, P = 0.028) samples (combined P = 0.002). CXCR2, but not CXCR1, expression was down regulated in pre-treatment compared to post-treatment splenic aspirates (P = 0.021).
This well-powered primary and replication genetic study, together with functional analysis of gene expression, implicate CXCR2 in determining outcome of VL in India.
PMCID: PMC3260103  PMID: 22171941
9.  No evidence for association between SLC11A1 and visceral leishmaniasis in India 
BMC Medical Genetics  2011;12:71.
SLC11A1 has pleiotropic effects on macrophage function and remains a strong candidate for infectious disease susceptibility. 5' and/or 3' polymorphisms have been associated with tuberculosis, leprosy, and visceral leishmaniasis (VL). Most studies undertaken to date were under-powered, and none has been replicated within a population. Association with tuberculosis has replicated variably across populations. Here we investigate SLC11A1 and VL in India.
Nine polymorphisms (rs34448891, rs7573065, rs2276631, rs3731865, rs17221959, rs2279015, rs17235409, rs17235416, rs17229009) that tag linkage disequilibrium blocks across SLC11A1 were genotyped in primary family-based (313 cases; 176 families) and replication (941 cases; 992 controls) samples. Family- and population-based analyses were performed to look for association between SLC11A1 variants and VL. Quantitative RT/PCR was used to compare SLC11A1 expression in mRNA from paired splenic aspirates taken before and after treatment from 24 VL patients carrying different genotypes at the functional promoter GTn polymorphism (rs34448891).
No associations were observed between VL and polymorphisms at SLC11A1 that were either robust to correction for multiple testing or replicated across primary and replication samples. No differences in expression of SLC11A1 were observed when comparing pre- and post-treatment samples, or between individuals carrying different genotypes at the GTn repeat.
This is the first well-powered study of SLC11A1 as a candidate for VL, which we conclude does not have a major role in regulating VL susceptibility in India.
PMCID: PMC3128845  PMID: 21599885
SLC11A1; visceral leishmaniasis; genetic susceptibility
10.  Diagnosis of Indian Visceral Leishmaniasis by Nucleic Acid Detection Using PCR 
PLoS ONE  2011;6(4):e19304.
PCR based diagnosis for Visceral Leishmaniasis (VL), despite numerous published primers, remains far from being applied in the field. The present study was planned to design a Leishmania specific diagnostic assay and to evaluate its sensitivity and specificity on a sample size, which to the best of our knowledge is the largest ever screened in one study.
Leishmania specific primers were developed using 18S rRNA gene and their sensitivity was evaluated on 500 parasitologically confirmed patients with VL and 25 Post Kala-azar Dermal Leishmaniasis (PKDL) patients. Specificity was calculated on 250 healthy endemic controls, 250 healthy non endemic controls and 250 non leishmanial diseases like malaria.
Our PCR assay had a sensitivity of 87.8% (95%CI: 84.1–89.8) using 200 µL of patient's peripheral-blood. Specificity was absolute in non-endemic healthy controls and in subjects with different diseases while in endemic controls it was 84% (95%CI: 78.9–88.0). Its overall specificity was 94.6% (95%CI-92.8–96.1).
The PCR assay developed is sensitive enough to detect the 18S rRNA gene in an amount equivalent to a single parasite or less in a one million human cell environment. The high sensitivity of this PCR diagnostic test with relatively non-invasive peripheral blood sampling method opens up the possibility of its deployment in field for the routine diagnosis of VL.
PMCID: PMC3084819  PMID: 21559398

Results 1-10 (10)