PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Natural infection of Plasmodium brasilianum in humans: Man and monkey share quartan malaria parasites in the Venezuelan Amazon 
EBioMedicine  2015;2(9):1186-1192.
Background
The quartan malaria parasite Plasmodium malariae is the widest spread and best adapted human malaria parasite. The simian Plasmodium brasilianum causes quartan fever in New World monkeys and resembles P. malariae morphologically. Since the genetics of the two parasites are nearly identical, differing only in a range of mutations expected within a species, it has long been speculated that the two are the same. However, no naturally acquired infection with parasites termed as P. brasilianum has been found in humans until now.
Methods
We investigated malaria cases from remote Yanomami indigenous communities of the Venezuelan Amazon and analyzed the genes coding for the circumsporozoite protein (CSP) and the small subunit of ribosomes (18S) by species-specific PCR and capillary based-DNA sequencing.
Findings
Based on 18S rRNA gene sequencing, we identified 12 patients harboring malaria parasites which were 100% identical with P. brasilianum isolated from the monkey, Alouatta seniculus. Translated amino acid sequences of the CS protein gene showed identical immunodominant repeat units between quartan malaria parasites isolated from both humans and monkeys.
Interpretation
This study reports, for the first time, naturally acquired infections in humans with parasites termed as P. brasilianum. We conclude that quartan malaria parasites are easily exchanged between humans and monkeys in Latin America. We hypothesize a lack of host specificity in mammalian hosts and consider quartan malaria to be a true anthropozoonosis. Since the name P. brasilianum suggests a malaria species distinct from P. malariae, we propose that P. brasilianum should have a nomenclatorial revision in case further research confirms our findings. The expansive reservoir of mammalian hosts discriminates quartan malaria from other Plasmodium spp. and requires particular research efforts.
Highlights
•We found human infections with ‘Plasmodium brasilianum’, a quartan malaria parasite of New World monkeys in South America•We show that in areas of close contact humans and non-human primates are concurrently infected with quartan malaria parasites•We conclude that quartan malaria parasites can transcend host species boundaries with impunity
We found naturally acquired infections in humans with Plasmodium brasilianum parasites, a quartan malaria parasite which usually infects more than 35 monkey species in South America. This confirms that malaria parasites, which cause the quartan type of fever (two days without fever between fever peaks), are easily exchanged between humans and monkeys in Latin America. The wide host reservoir of quartan malaria parasites requires particular malaria research efforts.
doi:10.1016/j.ebiom.2015.07.033
PMCID: PMC4588399  PMID: 26501116
Quartan malaria; Yanomami; Venezuela; Plasmodium malariae; Plasmodium brasilianum; New World monkey; Anthropozoonosis; Anthroponosis; Zoonosis; Circumsporozoite protein; CSP; Small subunit ribosomal RNA; 18S rRNA; Polymerase change reaction; Sequencing; PCR
2.  Direct venous inoculation of Plasmodium falciparum sporozoites for controlled human malaria infection: a dose-finding trial in two centres 
Malaria Journal  2015;14:117.
Background
Controlled human malaria infection (CHMI) accelerates development of anti-malarial interventions. So far, CHMI is done by exposure of volunteers to bites of five mosquitoes carrying Plasmodium falciparum sporozoites (PfSPZ), a technique available in only a few centres worldwide. Mosquito-mediated CHMI is logistically complex, exact PfSPZ dosage is impossible and live mosquito-based interventions are not suitable for further clinical development.
Methods
An open-labelled, randomized, dose-finding study in 18–45 year old, healthy, malaria-naïve volunteers was performed to assess if intravenous (IV) injection of 50 to 3,200 aseptic, purified, cryopreserved PfSPZ is safe and achieves infection kinetics comparable to published data of mosquito-mediated CHMI. An independent study site verified the fully infectious dose using direct venous inoculation of PfSPZ. Parasite kinetics were assessed by thick blood smear microscopy and quantitative real time PCR.
Results
IV inoculation with 50, 200, 800, or 3,200 PfSPZ led to parasitaemia in 1/3, 1/3, 7/9, and 9/9 volunteers, respectively. The geometric mean pre-patent period (GMPPP) was 11.2 days (range 10.5–12.5) in the 3,200 PfSPZ IV group. Subsequently, six volunteers received 3,200 PfSPZ by direct venous inoculation at an independent investigational site. All six developed parasitaemia (GMPPP: 11.4 days, range: 10.4–12.3). Inoculation of PfSPZ was safe. Infection rate and pre-patent period depended on dose, and injection of 3,200 PfSPZ led to a GMPPP similar to CHMI with five PfSPZ-infected mosquitoes. The infectious dose of PfSPZ predicted dosage of radiation-attenuated PfSPZ required for successful vaccination.
Conclusions
IV inoculation of PfSPZ is safe, well tolerated and highly reproducible. It shall further accelerate development of anti-malarial interventions through standardization and facilitation of CHMI. Beyond this, rational dose selection for whole PfSPZ-based immunization and complex study designs are now possible.
Trial registration
ClinicalTrials.gov NCT01624961 and NCT01771848.
doi:10.1186/s12936-015-0628-0
PMCID: PMC4371633  PMID: 25889522
Malaria; Plasmodium falciparum sporozoite; Microbial challenge; Controlled human malaria infection; Clinical trial
3.  Molecular Identification of Falciparum Malaria and Human Tuberculosis Co-Infections in Mummies from the Fayum Depression (Lower Egypt) 
PLoS ONE  2013;8(4):e60307.
Due to the presence of the lake Quarun and to the particular nature of its irrigation system, it has been speculated that the Fayum, a large depression 80 kilometers south- west of modern Cairo, was exposed to the hazards of malaria in historic times. Similarly, it has been speculated that, in the same area, also human tuberculosis might have been far more widespread in the antiquity than in its recent past. If these hypotheses were confirmed, it would imply that frequent cases of co-infection between the two pathogens might have occurred in ancient populations. To substantiate those speculations, molecular analyses were carried out on sixteen mummified heads recovered from the necropolis of Abusir el Meleq (Fayum) dating from the 3rd Intermediate Period (1064- 656 BC) to the Roman Period (30 BC- 300 AD). Soft tissue biopsies were used for DNA extractions and PCR amplifications using well-suited protocols. A partial 196-bp fragment of Plasmodium falciparum apical membrane antigen 1 gene and a 123-bp fragment of the Mycobacterium tuberculosis complex insertion sequence IS6110 were amplified and sequenced in six and five of the sixteen specimens, respectively. A 100% concordance rates between our sequences and those of P. falciparum and M. tuberculosis complex ones were obtained. Lastly, concomitant PCR amplification of P. falciparum and M. tuberculosis complex DNA specific fragments was obtained in four mummies, three of which are 14 C dated to the Late and Graeco-Roman Periods. Our data confirm that the hydrography of Fayum was extremely conducive to the spread of malaria. They also support the notion that the agricultural boom and dense crowding occurred in this region, especially under the Ptolemies, highly increased the probability for the manifestation and spread of tuberculosis. Here we extend back-wards to ca. 800 BC new evidence for malaria tropica and human tuberculosis co-occurrence in ancient Lower Egypt.
doi:10.1371/journal.pone.0060307
PMCID: PMC3614933  PMID: 23565222
4.  Maternal Footprints of Southeast Asians in North India 
Human heredity  2008;66(1):1-9.
We have analyzed 7137 samples from 125 different caste, tribal and religious groups of India and 99 samples from three populations of Nepal for the length variation in the COII/tRNALys region of mtDNA. Samples showing length variation were subjected to detailed phylogenetic analysis based on HVS-I and informative coding region sequence variation. The overall frequencies of the 9-bp deletion and insertion variants in South Asia were 1.8% and 0.5%, respectively. We have also defined a novel deep-rooting haplogroup M43 and identified the rare haplogroup H14 in Indian populations carrying the 9bp-deletion by complete mtDNA sequencing. Moreover, we redefined haplogroup M6 and dissected it into two well-defined subclades. The presence of haplogroups F1 and B5a in Uttar Pradesh suggests minor maternal contribution from Southeast Asia to Northern India. The occurrence of haplogroup F1 in the Nepalese sample implies that Nepal might have served as a bridge for the flow of eastern lineages to India. The presence of R6 in the Nepalese, on the other hand, suggests that the gene flow between India and Nepal has been reciprocal.
doi:10.1159/000114160
PMCID: PMC2588665  PMID: 18223312
South Asia; 9bp indel; mtDNA; Haplogroup
5.  Development of new genomic microsatellite markers from robusta coffee (Coffea canephora Pierre ex A. Froehner) showing broad cross-species transferability and utility in genetic studies 
BMC Plant Biology  2008;8:51.
Background
Species-specific microsatellite markers are desirable for genetic studies and to harness the potential of MAS-based breeding for genetic improvement. Limited availability of such markers for coffee, one of the most important beverage tree crops, warrants newer efforts to develop additional microsatellite markers that can be effectively deployed in genetic analysis and coffee improvement programs. The present study aimed to develop new coffee-specific SSR markers and validate their utility in analysis of genetic diversity, individualization, linkage mapping, and transferability for use in other related taxa.
Results
A small-insert partial genomic library of Coffea canephora, was probed for various SSR motifs following conventional approach of Southern hybridisation. Characterization of repeat positive clones revealed a very high abundance of DNRs (1/15 Kb) over TNRs (1/406 kb). The relative frequencies of different DNRs were found as AT >> AG > AC, whereas among TNRs, AGC was the most abundant repeat. The SSR positive sequences were used to design 58 primer pairs of which 44 pairs could be validated as single locus markers using a panel of arabica and robusta genotypes. The analysis revealed an average of 3.3 and 3.78 alleles and 0.49 and 0.62 PIC per marker for the tested arabicas and robustas, respectively. It also revealed a high cumulative PI over all the markers using both sib-based (10-6 and 10-12 for arabicas and robustas respectively) and unbiased corrected estimates (10-20 and 10-43 for arabicas and robustas respectively). The markers were tested for Hardy-Weinberg equilibrium, linkage dis-equilibrium, and were successfully used to ascertain generic diversity/affinities in the tested germplasm (cultivated as well as species). Nine markers could be mapped on robusta linkage map. Importantly, the markers showed ~92% transferability across related species/genera of coffee.
Conclusion
The conventional approach of genomic library was successfully employed although with low efficiency to develop a set of 44 new genomic microsatellite markers of coffee. The characterization/validation of new markers demonstrated them to be highly informative, and useful for genetic studies namely, genetic diversity in coffee germplasm, individualization/bar-coding for germplasm protection, linkage mapping, taxonomic studies, and use as conserved orthologous sets across secondary genepool of coffee. Further, the relative frequency and distribution of different SSR motifs in coffee genome indicated coffee genome to be relatively poor in microsatellites compared to other plant species.
doi:10.1186/1471-2229-8-51
PMCID: PMC2396172  PMID: 18447947
6.  Maternal Footprints of Southeast Asians in North India 
Human Heredity  2008;66(1):1-9.
We have analyzed 7,137 samples from 125 different caste, tribal and religious groups of India and 99 samples from three populations of Nepal for the length variation in the COII/tRNALys region of mtDNA. Samples showing length variation were subjected to detailed phylogenetic analysis based on HVS-I and informative coding region sequence variation. The overall frequencies of the 9-bp deletion and insertion variants in South Asia were 1.9 and 0.6%, respectively. We have also defined a novel deep-rooting haplogroup M43 and identified the rare haplogroup H14 in Indian populations carrying the 9-bp deletion by complete mtDNA sequencing. Moreover, we redefined haplogroup M6 and dissected it into two well-defined subclades. The presence of haplogroups F1 and B5a in Uttar Pradesh suggests minor maternal contribution from Southeast Asia to Northern India. The occurrence of haplogroup F1 in the Nepalese sample implies that Nepal might have served as a bridge for the flow of eastern lineages to India. The presence of R6 in the Nepalese, on the other hand, suggests that the gene flow between India and Nepal has been reciprocal.
doi:10.1159/000114160
PMCID: PMC2588665  PMID: 18223312
South Asia; 9bp indel; mtDNA; Haplogroup

Results 1-6 (6)