PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-12 (12)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Distinguishing the co-ancestries of haplogroup G Y-chromosomes in the populations of Europe and the Caucasus 
European Journal of Human Genetics  2012;20(12):1275-1282.
Haplogroup G, together with J2 clades, has been associated with the spread of agriculture, especially in the European context. However, interpretations based on simple haplogroup frequency clines do not recognize underlying patterns of genetic diversification. Although progress has been recently made in resolving the haplogroup G phylogeny, a comprehensive survey of the geographic distribution patterns of the significant sub-clades of this haplogroup has not been conducted yet. Here we present the haplogroup frequency distribution and STR variation of 16 informative G sub-clades by evaluating 1472 haplogroup G chromosomes belonging to 98 populations ranging from Europe to Pakistan. Although no basal G-M201* chromosomes were detected in our data set, the homeland of this haplogroup has been estimated to be somewhere nearby eastern Anatolia, Armenia or western Iran, the only areas characterized by the co-presence of deep basal branches as well as the occurrence of high sub-haplogroup diversity. The P303 SNP defines the most frequent and widespread G sub-haplogroup. However, its sub-clades have more localized distribution with the U1-defined branch largely restricted to Near/Middle Eastern and the Caucasus, whereas L497 lineages essentially occur in Europe where they likely originated. In contrast, the only U1 representative in Europe is the G-M527 lineage whose distribution pattern is consistent with regions of Greek colonization. No clinal patterns were detected suggesting that the distributions are rather indicative of isolation by distance and demographic complexities.
doi:10.1038/ejhg.2012.86
PMCID: PMC3499744  PMID: 22588667
Y-chromosome; haplogroup G; human evolution; population genetics
2.  The First Peopling of South America: New Evidence from Y-Chromosome Haplogroup Q 
PLoS ONE  2013;8(8):e71390.
Recent progress in the phylogenetic resolution of the Y-chromosome phylogeny permits the male demographic dynamics and migratory events that occurred in Central and Southern America after the initial human spread into the Americas to be investigated at the regional level. To delve further into this issue, we examined more than 400 Native American Y chromosomes (collected in the region ranging from Mexico to South America) belonging to haplogroup Q – virtually the only branch of the Y phylogeny observed in modern-day Amerindians of Central and South America – together with 27 from Mongolia and Kamchatka. Two main founding lineages, Q1a3a1a-M3 and Q1a3a1-L54(xM3), were detected along with novel sub-clades of younger age and more restricted geographic distributions. The first was also observed in Far East Asia while no Q1a3a1-L54(xM3) Y chromosome was found in Asia except the southern Siberian-specific sub-clade Q1a3a1c-L330. Our data not only confirm a southern Siberian origin of ancestral populations that gave rise to Paleo-Indians and the differentiation of both Native American Q founding lineages in Beringia, but support their concomitant arrival in Mesoamerica, where Mexico acted as recipient for the first wave of migration, followed by a rapid southward migration, along the Pacific coast, into the Andean region. Although Q1a3a1a-M3 and Q1a3a1-L54(xM3) display overlapping general distributions, they show different patterns of evolution in the Mexican plateau and the Andean area, which can be explained by local differentiations due to demographic events triggered by the introduction of agriculture and associated with the flourishing of the Great Empires.
doi:10.1371/journal.pone.0071390
PMCID: PMC3749222  PMID: 23990949
3.  Mitogenomes from Two Uncommon Haplogroups Mark Late Glacial/Postglacial Expansions from the Near East and Neolithic Dispersals within Europe 
PLoS ONE  2013;8(7):e70492.
The current human mitochondrial (mtDNA) phylogeny does not equally represent all human populations but is biased in favour of representatives originally from north and central Europe. This especially affects the phylogeny of some uncommon West Eurasian haplogroups, including I and W, whose southern European and Near Eastern components are very poorly represented, suggesting that extensive hidden phylogenetic substructure remains to be uncovered. This study expanded and re-analysed the available datasets of I and W complete mtDNA genomes, reaching a comprehensive 419 mitogenomes, and searched for precise correlations between the ages and geographical distributions of their numerous newly identified subclades with events of human dispersal which contributed to the genetic formation of modern Europeans. Our results showed that haplogroups I (within N1a1b) and W originated in the Near East during the Last Glacial Maximum or pre-warming period (the period of gradual warming between the end of the LGM, ∼19 ky ago, and the beginning of the first main warming phase, ∼15 ky ago) and, like the much more common haplogroups J and T, may have been involved in Late Glacial expansions starting from the Near East. Thus our data contribute to a better definition of the Late and postglacial re-peopling of Europe, providing further evidence for the scenario that major population expansions started after the Last Glacial Maximum but before Neolithic times, but also evidencing traces of diffusion events in several I and W subclades dating to the European Neolithic and restricted to Europe.
doi:10.1371/journal.pone.0070492
PMCID: PMC3729697  PMID: 23936216
4.  Y-Chromosome Diversity in Modern Bulgarians: New Clues about Their Ancestry 
PLoS ONE  2013;8(3):e56779.
To better define the structure and origin of the Bulgarian paternal gene pool, we have examined the Y-chromosome variation in 808 Bulgarian males. The analysis was performed by high-resolution genotyping of biallelic markers and by analyzing the STR variation within the most informative haplogroups. We found that the Y-chromosome gene pool in modern Bulgarians is primarily represented by Western Eurasian haplogroups with ∼ 40% belonging to haplogroups E-V13 and I-M423, and 20% to R-M17. Haplogroups common in the Middle East (J and G) and in South Western Asia (R-L23*) occur at frequencies of 19% and 5%, respectively. Haplogroups C, N and Q, distinctive for Altaic and Central Asian Turkic-speaking populations, occur at the negligible frequency of only 1.5%. Principal Component analyses group Bulgarians with European populations, apart from Central Asian Turkic-speaking groups and South Western Asia populations. Within the country, the genetic variation is structured in Western, Central and Eastern Bulgaria indicating that the Balkan Mountains have been permeable to human movements. The lineage analysis provided the following interesting results: (i) R-L23* is present in Eastern Bulgaria since the post glacial period; (ii) haplogroup E-V13 has a Mesolithic age in Bulgaria from where it expanded after the arrival of farming; (iii) haplogroup J-M241 probably reflects the Neolithic westward expansion of farmers from the earliest sites along the Black Sea. On the whole, in light of the most recent historical studies, which indicate a substantial proto-Bulgarian input to the contemporary Bulgarian people, our data suggest that a common paternal ancestry between the proto-Bulgarians and the Altaic and Central Asian Turkic-speaking populations either did not exist or was negligible.
doi:10.1371/journal.pone.0056779
PMCID: PMC3590186  PMID: 23483890
5.  Ancient Migratory Events in the Middle East: New Clues from the Y-Chromosome Variation of Modern Iranians 
PLoS ONE  2012;7(7):e41252.
Knowledge of high resolution Y-chromosome haplogroup diversification within Iran provides important geographic context regarding the spread and compartmentalization of male lineages in the Middle East and southwestern Asia. At present, the Iranian population is characterized by an extraordinary mix of different ethnic groups speaking a variety of Indo-Iranian, Semitic and Turkic languages. Despite these features, only few studies have investigated the multiethnic components of the Iranian gene pool. In this survey 938 Iranian male DNAs belonging to 15 ethnic groups from 14 Iranian provinces were analyzed for 84 Y-chromosome biallelic markers and 10 STRs. The results show an autochthonous but non-homogeneous ancient background mainly composed by J2a sub-clades with different external contributions. The phylogeography of the main haplogroups allowed identifying post-glacial and Neolithic expansions toward western Eurasia but also recent movements towards the Iranian region from western Eurasia (R1b-L23), Central Asia (Q-M25), Asia Minor (J2a-M92) and southern Mesopotamia (J1-Page08). In spite of the presence of important geographic barriers (Zagros and Alborz mountain ranges, and the Dasht-e Kavir and Dash-e Lut deserts) which may have limited gene flow, AMOVA analysis revealed that language, in addition to geography, has played an important role in shaping the nowadays Iranian gene pool. Overall, this study provides a portrait of the Y-chromosomal variation in Iran, useful for depicting a more comprehensive history of the peoples of this area as well as for reconstructing ancient migration routes. In addition, our results evidence the important role of the Iranian plateau as source and recipient of gene flow between culturally and genetically distinct populations.
doi:10.1371/journal.pone.0041252
PMCID: PMC3399854  PMID: 22815981
6.  In search of the genetic footprints of Sumerians: a survey of Y-chromosome and mtDNA variation in the Marsh Arabs of Iraq 
Background
For millennia, the southern part of the Mesopotamia has been a wetland region generated by the Tigris and Euphrates rivers before flowing into the Gulf. This area has been occupied by human communities since ancient times and the present-day inhabitants, the Marsh Arabs, are considered the population with the strongest link to ancient Sumerians. Popular tradition, however, considers the Marsh Arabs as a foreign group, of unknown origin, which arrived in the marshlands when the rearing of water buffalo was introduced to the region.
Results
To shed some light on the paternal and maternal origin of this population, Y chromosome and mitochondrial DNA (mtDNA) variation was surveyed in 143 Marsh Arabs and in a large sample of Iraqi controls. Analyses of the haplogroups and sub-haplogroups observed in the Marsh Arabs revealed a prevalent autochthonous Middle Eastern component for both male and female gene pools, with weak South-West Asian and African contributions, more evident in mtDNA. A higher male than female homogeneity is characteristic of the Marsh Arab gene pool, likely due to a strong male genetic drift determined by socio-cultural factors (patrilocality, polygamy, unequal male and female migration rates).
Conclusions
Evidence of genetic stratification ascribable to the Sumerian development was provided by the Y-chromosome data where the J1-Page08 branch reveals a local expansion, almost contemporary with the Sumerian City State period that characterized Southern Mesopotamia. On the other hand, a more ancient background shared with Northern Mesopotamia is revealed by the less represented Y-chromosome lineage J1-M267*. Overall our results indicate that the introduction of water buffalo breeding and rice farming, most likely from the Indian sub-continent, only marginally affected the gene pool of autochthonous people of the region. Furthermore, a prevalent Middle Eastern ancestry of the modern population of the marshes of southern Iraq implies that if the Marsh Arabs are descendants of the ancient Sumerians, also the Sumerians were most likely autochthonous and not of Indian or South Asian ancestry.
doi:10.1186/1471-2148-11-288
PMCID: PMC3215667  PMID: 21970613
8.  Mitochondrial DNA Backgrounds Might Modulate Diabetes Complications Rather than T2DM as a Whole 
PLoS ONE  2011;6(6):e21029.
Mitochondrial dysfunction has been implicated in rare and common forms of type 2 diabetes (T2DM). Additionally, rare mitochondrial DNA (mtDNA) mutations have been shown to be causal for T2DM pathogenesis. So far, many studies have investigated the possibility that mtDNA variation might affect the risk of T2DM, however, when found, haplogroup association has been rarely replicated, even in related populations, possibly due to an inadequate level of haplogroup resolution. Effects of mtDNA variation on diabetes complications have also been proposed. However, additional studies evaluating the mitochondrial role on both T2DM and related complications are badly needed. To test the hypothesis of a mitochondrial genome effect on diabetes and its complications, we genotyped the mtDNAs of 466 T2DM patients and 438 controls from a regional population of central Italy (Marche). Based on the most updated mtDNA phylogeny, all 904 samples were classified into 57 different mitochondrial sub-haplogroups, thus reaching an unprecedented level of resolution. We then evaluated whether the susceptibility of developing T2DM or its complications differed among the identified haplogroups, considering also the potential effects of phenotypical and clinical variables. MtDNA backgrounds, even when based on a refined haplogroup classification, do not appear to play a role in developing T2DM despite a possible protective effect for the common European haplogroup H1, which harbors the G3010A transition in the MTRNR2 gene. In contrast, our data indicate that different mitochondrial haplogroups are significantly associated with an increased risk of specific diabetes complications: H (the most frequent European haplogroup) with retinopathy, H3 with neuropathy, U3 with nephropathy, and V with renal failure.
doi:10.1371/journal.pone.0021029
PMCID: PMC3111471  PMID: 21695278
9.  Separating the post-Glacial coancestry of European and Asian Y chromosomes within haplogroup R1a 
Human Y-chromosome haplogroup structure is largely circumscribed by continental boundaries. One notable exception to this general pattern is the young haplogroup R1a that exhibits post-Glacial coalescent times and relates the paternal ancestry of more than 10% of men in a wide geographic area extending from South Asia to Central East Europe and South Siberia. Its origin and dispersal patterns are poorly understood as no marker has yet been described that would distinguish European R1a chromosomes from Asian. Here we present frequency and haplotype diversity estimates for more than 2000 R1a chromosomes assessed for several newly discovered SNP markers that introduce the onset of informative R1a subdivisions by geography. Marker M434 has a low frequency and a late origin in West Asia bearing witness to recent gene flow over the Arabian Sea. Conversely, marker M458 has a significant frequency in Europe, exceeding 30% in its core area in Eastern Europe and comprising up to 70% of all M17 chromosomes present there. The diversity and frequency profiles of M458 suggest its origin during the early Holocene and a subsequent expansion likely related to a number of prehistoric cultural developments in the region. Its primary frequency and diversity distribution correlates well with some of the major Central and East European river basins where settled farming was established before its spread further eastward. Importantly, the virtual absence of M458 chromosomes outside Europe speaks against substantial patrilineal gene flow from East Europe to Asia, including to India, at least since the mid-Holocene.
doi:10.1038/ejhg.2009.194
PMCID: PMC2987245  PMID: 19888303
Y chromosome; haplogroup R1a; human evolution; population genetics
10.  Mitochondrial and Y-chromosome diversity of the Tharus (Nepal): a reservoir of genetic variation 
Background
Central Asia and the Indian subcontinent represent an area considered as a source and a reservoir for human genetic diversity, with many markers taking root here, most of which are the ancestral state of eastern and western haplogroups, while others are local. Between these two regions, Terai (Nepal) is a pivotal passageway allowing, in different times, multiple population interactions, although because of its highly malarial environment, it was scarcely inhabited until a few decades ago, when malaria was eradicated. One of the oldest and the largest indigenous people of Terai is represented by the malaria resistant Tharus, whose gene pool could still retain traces of ancient complex interactions. Until now, however, investigations on their genetic structure have been scarce mainly identifying East Asian signatures.
Results
High-resolution analyses of mitochondrial-DNA (including 34 complete sequences) and Y-chromosome (67 SNPs and 12 STRs) variations carried out in 173 Tharus (two groups from Central and one from Eastern Terai), and 104 Indians (Hindus from Terai and New Delhi and tribals from Andhra Pradesh) allowed the identification of three principal components: East Asian, West Eurasian and Indian, the last including both local and inter-regional sub-components, at least for the Y chromosome.
Conclusion
Although remarkable quantitative and qualitative differences appear among the various population groups and also between sexes within the same group, many mitochondrial-DNA and Y-chromosome lineages are shared or derived from ancient Indian haplogroups, thus revealing a deep shared ancestry between Tharus and Indians. Interestingly, the local Y-chromosome Indian component observed in the Andhra-Pradesh tribals is present in all Tharu groups, whereas the inter-regional component strongly prevails in the two Hindu samples and other Nepalese populations.
The complete sequencing of mtDNAs from unresolved haplogroups also provided informative markers that greatly improved the mtDNA phylogeny and allowed the identification of ancient relationships between Tharus and Malaysia, the Andaman Islands and Japan as well as between India and North and East Africa. Overall, this study gives a paradigmatic example of the importance of genetic isolates in revealing variants not easily detectable in the general population.
doi:10.1186/1471-2148-9-154
PMCID: PMC2720951  PMID: 19573232
12.  Y-chromosomal evidence of the cultural diffusion of agriculture in southeast Europe 
The debate concerning the mechanisms underlying the prehistoric spread of farming to Southeast Europe is framed around the opposing roles of population movement and cultural diffusion. To investigate the possible involvement of local people during the transition of agriculture in the Balkans, we analysed patterns of Y-chromosome diversity in 1206 subjects from 17 population samples, mainly from Southeast Europe. Evidence from three Y-chromosome lineages, I-M423, E-V13 and J-M241, make it possible to distinguish between Holocene Mesolithic forager and subsequent Neolithic range expansions from the eastern Sahara and the Near East, respectively. In particular, whereas the Balkan microsatellite variation associated to J-M241 correlates with the Neolithic period, those related to E-V13 and I-M423 Balkan Y chromosomes are consistent with a late Mesolithic time frame. In addition, the low frequency and variance associated to I-M423 and E-V13 in Anatolia and the Middle East, support an European Mesolithic origin of these two clades. Thus, these Balkan Mesolithic foragers with their own autochthonous genetic signatures, were destined to become the earliest to adopt farming, when it was subsequently introduced by a cadre of migrating farmers from the Near East. These initial local converted farmers became the principal agents spreading this economy using maritime leapfrog colonization strategies in the Adriatic and transmitting the Neolithic cultural package to other adjacent Mesolithic populations. The ensuing range expansions of E-V13 and I-M423 parallel in space and time the diffusion of Neolithic Impressed Ware, thereby supporting a case of cultural diffusion using genetic evidence.
doi:10.1038/ejhg.2008.249
PMCID: PMC2947100  PMID: 19107149
Balkan Neolithic; farming transition; peopling of Europe; Y-chromosome haplogroups

Results 1-12 (12)