PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-12 (12)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Mitochondrial Genome Sequencing in Mesolithic North East Europe Unearths a New Sub-Clade within the Broadly Distributed Human Haplogroup C1 
PLoS ONE  2014;9(2):e87612.
The human mitochondrial haplogroup C1 has a broad global distribution but is extremely rare in Europe today. Recent ancient DNA evidence has demonstrated its presence in European Mesolithic individuals. Three individuals from the 7,500 year old Mesolithic site of Yuzhnyy Oleni Ostrov, Western Russia, could be assigned to haplogroup C1 based on mitochondrial hypervariable region I sequences. However, hypervariable region I data alone could not provide enough resolution to establish the phylogenetic relationship of these Mesolithic haplotypes with haplogroup C1 mitochondrial DNA sequences found today in populations of Europe, Asia and the Americas. In order to obtain high-resolution data and shed light on the origin of this European Mesolithic C1 haplotype, we target-enriched and sequenced the complete mitochondrial genome of one Yuzhnyy Oleni Ostrov C1 individual. The updated phylogeny of C1 haplogroups indicated that the Yuzhnyy Oleni Ostrov haplotype represents a new distinct clade, provisionally coined “C1f”. We show that all three C1 carriers of Yuzhnyy Oleni Ostrov belong to this clade. No haplotype closely related to the C1f sequence could be found in the large current database of ancient and present-day mitochondrial genomes. Hence, we have discovered past human mitochondrial diversity that has not been observed in modern-day populations so far. The lack of positive matches in modern populations may be explained by under-sampling of rare modern C1 carriers or by demographic processes, population extinction or replacement, that may have impacted on populations of Northeast Europe since prehistoric times.
doi:10.1371/journal.pone.0087612
PMCID: PMC3913659  PMID: 24503968
2.  Distinguishing the co-ancestries of haplogroup G Y-chromosomes in the populations of Europe and the Caucasus 
European Journal of Human Genetics  2012;20(12):1275-1282.
Haplogroup G, together with J2 clades, has been associated with the spread of agriculture, especially in the European context. However, interpretations based on simple haplogroup frequency clines do not recognize underlying patterns of genetic diversification. Although progress has been recently made in resolving the haplogroup G phylogeny, a comprehensive survey of the geographic distribution patterns of the significant sub-clades of this haplogroup has not been conducted yet. Here we present the haplogroup frequency distribution and STR variation of 16 informative G sub-clades by evaluating 1472 haplogroup G chromosomes belonging to 98 populations ranging from Europe to Pakistan. Although no basal G-M201* chromosomes were detected in our data set, the homeland of this haplogroup has been estimated to be somewhere nearby eastern Anatolia, Armenia or western Iran, the only areas characterized by the co-presence of deep basal branches as well as the occurrence of high sub-haplogroup diversity. The P303 SNP defines the most frequent and widespread G sub-haplogroup. However, its sub-clades have more localized distribution with the U1-defined branch largely restricted to Near/Middle Eastern and the Caucasus, whereas L497 lineages essentially occur in Europe where they likely originated. In contrast, the only U1 representative in Europe is the G-M527 lineage whose distribution pattern is consistent with regions of Greek colonization. No clinal patterns were detected suggesting that the distributions are rather indicative of isolation by distance and demographic complexities.
doi:10.1038/ejhg.2012.86
PMCID: PMC3499744  PMID: 22588667
Y-chromosome; haplogroup G; human evolution; population genetics
3.  Ancient DNA Reveals Prehistoric Gene-Flow from Siberia in the Complex Human Population History of North East Europe 
PLoS Genetics  2013;9(2):e1003296.
North East Europe harbors a high diversity of cultures and languages, suggesting a complex genetic history. Archaeological, anthropological, and genetic research has revealed a series of influences from Western and Eastern Eurasia in the past. While genetic data from modern-day populations is commonly used to make inferences about their origins and past migrations, ancient DNA provides a powerful test of such hypotheses by giving a snapshot of the past genetic diversity. In order to better understand the dynamics that have shaped the gene pool of North East Europeans, we generated and analyzed 34 mitochondrial genotypes from the skeletal remains of three archaeological sites in northwest Russia. These sites were dated to the Mesolithic and the Early Metal Age (7,500 and 3,500 uncalibrated years Before Present). We applied a suite of population genetic analyses (principal component analysis, genetic distance mapping, haplotype sharing analyses) and compared past demographic models through coalescent simulations using Bayesian Serial SimCoal and Approximate Bayesian Computation. Comparisons of genetic data from ancient and modern-day populations revealed significant changes in the mitochondrial makeup of North East Europeans through time. Mesolithic foragers showed high frequencies and diversity of haplogroups U (U2e, U4, U5a), a pattern observed previously in European hunter-gatherers from Iberia to Scandinavia. In contrast, the presence of mitochondrial DNA haplogroups C, D, and Z in Early Metal Age individuals suggested discontinuity with Mesolithic hunter-gatherers and genetic influx from central/eastern Siberia. We identified remarkable genetic dissimilarities between prehistoric and modern-day North East Europeans/Saami, which suggests an important role of post-Mesolithic migrations from Western Europe and subsequent population replacement/extinctions. This work demonstrates how ancient DNA can improve our understanding of human population movements across Eurasia. It contributes to the description of the spatio-temporal distribution of mitochondrial diversity and will be of significance for future reconstructions of the history of Europeans.
Author Summary
The history of human populations can be retraced by studying the archaeological and anthropological record, but also by examining the current distribution of genetic markers, such as the maternally inherited mitochondrial DNA. Ancient DNA research allows the retrieval of DNA from ancient skeletal remains and contributes to the reconstruction of the human population history through the comparison of ancient and present-day genetic data. Here, we analysed the mitochondrial DNA of prehistoric remains from archaeological sites dated to 7,500 and 3,500 years Before Present. These sites are located in North East Europe, a region that displays a significant cultural and linguistic diversity today but for which no ancient human DNA was available before. We show that prehistoric hunter-gatherers of North East Europe were genetically similar to other European foragers. We also detected a prehistoric genetic input from Siberia, followed by migrations from Western Europe into North East Europe. Our research contributes to the understanding of the origins and past dynamics of human population in Europe.
doi:10.1371/journal.pgen.1003296
PMCID: PMC3573127  PMID: 23459685
4.  Parallel Evolution of Genes and Languages in the Caucasus Region 
Molecular biology and evolution  2011;28(10):2905-2920.
We analyzed 40 SNP and 19 STR Y-chromosomal markers in a large sample of 1,525 indigenous individuals from 14 populations in the Caucasus and 254 additional individuals representing potential source populations. We also employed a lexicostatistical approach to reconstruct the history of the languages of the North Caucasian family spoken by the Caucasus populations. We found a different major haplogroup to be prevalent in each of four sets of populations that occupy distinct geographic regions and belong to different linguistic branches. The haplogroup frequencies correlated with geography and, even more strongly, with language. Within haplogroups, a number of haplotype clusters were shown to be specific to individual populations and languages. The data suggested a direct origin of Caucasus male lineages from the Near East, followed by high levels of isolation, differentiation and genetic drift in situ. Comparison of genetic and linguistic reconstructions covering the last few millennia showed striking correspondences between the topology and dates of the respective gene and language trees, and with documented historical events. Overall, in the Caucasus region, unmatched levels of gene-language co-evolution occurred within geographically isolated populations, probably due to its mountainous terrain.
doi:10.1093/molbev/msr126
PMCID: PMC3355373  PMID: 21571925
Y chromosome; glottochronology; Caucasus; gene geography
5.  Afghanistan's Ethnic Groups Share a Y-Chromosomal Heritage Structured by Historical Events 
PLoS ONE  2012;7(3):e34288.
Afghanistan has held a strategic position throughout history. It has been inhabited since the Paleolithic and later became a crossroad for expanding civilizations and empires. Afghanistan's location, history, and diverse ethnic groups present a unique opportunity to explore how nations and ethnic groups emerged, and how major cultural evolutions and technological developments in human history have influenced modern population structures. In this study we have analyzed, for the first time, the four major ethnic groups in present-day Afghanistan: Hazara, Pashtun, Tajik, and Uzbek, using 52 binary markers and 19 short tandem repeats on the non-recombinant segment of the Y-chromosome. A total of 204 Afghan samples were investigated along with more than 8,500 samples from surrounding populations important to Afghanistan's history through migrations and conquests, including Iranians, Greeks, Indians, Middle Easterners, East Europeans, and East Asians. Our results suggest that all current Afghans largely share a heritage derived from a common unstructured ancestral population that could have emerged during the Neolithic revolution and the formation of the first farming communities. Our results also indicate that inter-Afghan differentiation started during the Bronze Age, probably driven by the formation of the first civilizations in the region. Later migrations and invasions into the region have been assimilated differentially among the ethnic groups, increasing inter-population genetic differences, and giving the Afghans a unique genetic diversity in Central Asia.
doi:10.1371/journal.pone.0034288
PMCID: PMC3314501  PMID: 22470552
6.  A major Y-chromosome haplogroup R1b Holocene era founder effect in Central and Western Europe 
The phylogenetic relationships of numerous branches within the core Y-chromosome haplogroup R-M207 support a West Asian origin of haplogroup R1b, its initial differentiation there followed by a rapid spread of one of its sub-clades carrying the M269 mutation to Europe. Here, we present phylogeographically resolved data for 2043 M269-derived Y-chromosomes from 118 West Asian and European populations assessed for the M412 SNP that largely separates the majority of Central and West European R1b lineages from those observed in Eastern Europe, the Circum-Uralic region, the Near East, the Caucasus and Pakistan. Within the M412 dichotomy, the major S116 sub-clade shows a frequency peak in the upper Danube basin and Paris area with declining frequency toward Italy, Iberia, Southern France and British Isles. Although this frequency pattern closely approximates the spread of the Linearbandkeramik (LBK), Neolithic culture, an advent leading to a number of pre-historic cultural developments during the past ≤10 thousand years, more complex pre-Neolithic scenarios remain possible for the L23(xM412) components in Southeast Europe and elsewhere.
doi:10.1038/ejhg.2010.146
PMCID: PMC3039512  PMID: 20736979
Y-chromosome; haplogroup R1b; human evolution; population genetics
8.  Separating the post-Glacial coancestry of European and Asian Y chromosomes within haplogroup R1a 
Human Y-chromosome haplogroup structure is largely circumscribed by continental boundaries. One notable exception to this general pattern is the young haplogroup R1a that exhibits post-Glacial coalescent times and relates the paternal ancestry of more than 10% of men in a wide geographic area extending from South Asia to Central East Europe and South Siberia. Its origin and dispersal patterns are poorly understood as no marker has yet been described that would distinguish European R1a chromosomes from Asian. Here we present frequency and haplotype diversity estimates for more than 2000 R1a chromosomes assessed for several newly discovered SNP markers that introduce the onset of informative R1a subdivisions by geography. Marker M434 has a low frequency and a late origin in West Asia bearing witness to recent gene flow over the Arabian Sea. Conversely, marker M458 has a significant frequency in Europe, exceeding 30% in its core area in Eastern Europe and comprising up to 70% of all M17 chromosomes present there. The diversity and frequency profiles of M458 suggest its origin during the early Holocene and a subsequent expansion likely related to a number of prehistoric cultural developments in the region. Its primary frequency and diversity distribution correlates well with some of the major Central and East European river basins where settled farming was established before its spread further eastward. Importantly, the virtual absence of M458 chromosomes outside Europe speaks against substantial patrilineal gene flow from East Europe to Asia, including to India, at least since the mid-Holocene.
doi:10.1038/ejhg.2009.194
PMCID: PMC2987245  PMID: 19888303
Y chromosome; haplogroup R1a; human evolution; population genetics
9.  Ancient DNA from European Early Neolithic Farmers Reveals Their Near Eastern Affinities 
PLoS Biology  2010;8(11):e1000536.
The first farmers from Central Europe reveal a genetic affinity to modern-day populations from the Near East and Anatolia, which suggests a significant demographic input from this area during the early Neolithic.
In Europe, the Neolithic transition (8,000–4,000 b.c.) from hunting and gathering to agricultural communities was one of the most important demographic events since the initial peopling of Europe by anatomically modern humans in the Upper Paleolithic (40,000 b.c.). However, the nature and speed of this transition is a matter of continuing scientific debate in archaeology, anthropology, and human population genetics. To date, inferences about the genetic make up of past populations have mostly been drawn from studies of modern-day Eurasian populations, but increasingly ancient DNA studies offer a direct view of the genetic past. We genetically characterized a population of the earliest farming culture in Central Europe, the Linear Pottery Culture (LBK; 5,500–4,900 calibrated b.c.) and used comprehensive phylogeographic and population genetic analyses to locate its origins within the broader Eurasian region, and to trace potential dispersal routes into Europe. We cloned and sequenced the mitochondrial hypervariable segment I and designed two powerful SNP multiplex PCR systems to generate new mitochondrial and Y-chromosomal data from 21 individuals from a complete LBK graveyard at Derenburg Meerenstieg II in Germany. These results considerably extend the available genetic dataset for the LBK (n = 42) and permit the first detailed genetic analysis of the earliest Neolithic culture in Central Europe (5,500–4,900 calibrated b.c.). We characterized the Neolithic mitochondrial DNA sequence diversity and geographical affinities of the early farmers using a large database of extant Western Eurasian populations (n = 23,394) and a wide range of population genetic analyses including shared haplotype analyses, principal component analyses, multidimensional scaling, geographic mapping of genetic distances, and Bayesian Serial Simcoal analyses. The results reveal that the LBK population shared an affinity with the modern-day Near East and Anatolia, supporting a major genetic input from this area during the advent of farming in Europe. However, the LBK population also showed unique genetic features including a clearly distinct distribution of mitochondrial haplogroup frequencies, confirming that major demographic events continued to take place in Europe after the early Neolithic.
Author Summary
The transition from a hunter–gatherer existence to a sedentary farming-based lifestyle has had key consequences for human groups around the world and has profoundly shaped human societies. Originating in the Near East around 11,000 y ago, an agricultural lifestyle subsequently spread across Europe during the New Stone Age (Neolithic). Whether it was mediated by incoming farmers or driven by the transmission of innovative ideas and techniques remains a subject of continuing debate in archaeology, anthropology, and human population genetics. Ancient DNA from the earliest farmers can provide a direct view of the genetic diversity of these populations in the earliest Neolithic. Here, we compare Neolithic haplogroups and their diversity to a large database of extant European and Eurasian populations. We identified Neolithic haplotypes that left clear traces in modern populations, and the data suggest a route for the migrating farmers that extends from the Near East and Anatolia into Central Europe. When compared to indigenous hunter–gatherer populations, the unique and characteristic genetic signature of the early farmers suggests a significant demographic input from the Near East during the onset of farming in Europe.
doi:10.1371/journal.pbio.1000536
PMCID: PMC2976717  PMID: 21085689
11.  The Genographic Project Public Participation Mitochondrial DNA Database 
PLoS Genetics  2007;3(6):e104.
The Genographic Project is studying the genetic signatures of ancient human migrations and creating an open-source research database. It allows members of the public to participate in a real-time anthropological genetics study by submitting personal samples for analysis and donating the genetic results to the database. We report our experience from the first 18 months of public participation in the Genographic Project, during which we have created the largest standardized human mitochondrial DNA (mtDNA) database ever collected, comprising 78,590 genotypes. Here, we detail our genotyping and quality assurance protocols including direct sequencing of the mtDNA HVS-I, genotyping of 22 coding-region SNPs, and a series of computational quality checks based on phylogenetic principles. This database is very informative with respect to mtDNA phylogeny and mutational dynamics, and its size allows us to develop a nearest neighbor–based methodology for mtDNA haplogroup prediction based on HVS-I motifs that is superior to classic rule-based approaches. We make available to the scientific community and general public two new resources: a periodically updated database comprising all data donated by participants, and the nearest neighbor haplogroup prediction tool.
Author Summary
The Genographic Project was launched in 2005 to address anthropological questions on a global scale using genetics as a tool. Samples are collected in two ways. First, the project comprises a consortium of ten scientific teams from around the world united by a core ethical and scientific framework that is responsible for sample collection and analysis in their respective region. Second, the project promotes public participation in countries around the world and anyone can participate by purchasing a participation kit (Video S1). The mitochondrial DNA (mtDNA), typed in female participants, is inherited from the mother without recombining, being particularly informative with respect to maternal ancestry. Over the first 18 months of public participation in the project we have built up the largest to date database of mtDNA variants, containing 78,590 entries from around the world. Here, we describe the procedures used to generate, manage, and analyze the genetic data, and the first insights from them. We can understand new aspects of the structure of the mtDNA tree and develop much better ways of classifying mtDNA. We therefore now release this dataset and the new methods we have developed, and will continue to update them as more people join the Genographic Project.
doi:10.1371/journal.pgen.0030104
PMCID: PMC1904368  PMID: 17604454
12.  Geographic population structure analysis of worldwide human populations infers their biogeographical origins 
Nature Communications  2014;5:3513.
The search for a method that utilizes biological information to predict humans’ place of origin has occupied scientists for millennia. Over the past four decades, scientists have employed genetic data in an effort to achieve this goal but with limited success. While biogeographical algorithms using next-generation sequencing data have achieved an accuracy of 700 km in Europe, they were inaccurate elsewhere. Here we describe the Geographic Population Structure (GPS) algorithm and demonstrate its accuracy with three data sets using 40,000–130,000 SNPs. GPS placed 83% of worldwide individuals in their country of origin. Applied to over 200 Sardinians villagers, GPS placed a quarter of them in their villages and most of the rest within 50 km of their villages. GPS’s accuracy and power to infer the biogeography of worldwide individuals down to their country or, in some cases, village, of origin, underscores the promise of admixture-based methods for biogeography and has ramifications for genetic ancestry testing.
Current methods to identify the geographical origin of humans based on DNA data present limited accuracy. Here, the authors develop a new algorithm, the Genographic Population Structure (GPS), and demonstrate its ability to place worldwide individuals within their country or, in some cases, village of origin.
doi:10.1038/ncomms4513
PMCID: PMC4007635  PMID: 24781250

Results 1-12 (12)