Search tips
Search criteria

Results 1-3 (3)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Human fetal and adult epicardial-derived cells: a novel model to study their activation 
The epicardium, a cell layer covering the heart, plays an important role during cardiogenesis providing cardiovascular cell types and instructive signals, but becomes quiescent during adulthood. Upon cardiac injury the epicardium is activated, which includes induction of a developmental gene program, epithelial-to-mesenchymal transition (EMT) and migration. However, the response of the adult epicardium is suboptimal compared to the active contribution of the fetal epicardium to heart development. To understand the therapeutic value of epicardial-derived cells (EPDCs), a direct comparison of fetal and adult sources is paramount. Such analysis has been hampered by the lack of appropriate culture systems.
Human fetal and adult EPDCs were isolated from cardiac specimens obtained after informed consent. EPDCs were cultured in the presence of an inhibitor of the TGFβ receptor ALK5. EMT was induced by stimulation with 1 ng/ml TGFβ. PCR, immunofluorescent staining, scratch assay, tube formation assay and RT2-PCR for human EMT genes were performed to functionally characterize and compare fetal and adult EPDCs.
In this study, a novel protocol is presented that allows efficient isolation of human EPDCs from fetal and adult heart tissue. In vitro, EPDCs maintain epithelial characteristics and undergo EMT upon TGFβ stimulation. Although similar in several aspects, we observed important differences between fetal and adult EPDCs. Fetal and adult cells display equal migration abilities in their epithelial state. However, while TGFβ stimulation enhanced adult EPDC migration, it resulted in a reduced migration in fetal EPDCs. Matrigel assays revealed the ability of adult EPDCs to form tube-like structures, which was absent in fetal cells. Furthermore, we observed that fetal cells progress through EMT faster and undergo spontaneous EMT when TGFβ signaling is not suppressed, indicating that fetal EPDCs more rapidly respond to environmental changes.
Our data suggest that fetal and adult EPDCs are in a different state of activation and that their phenotypic plasticity is determined by this activation state. This culture system allows us to establish the cues that determine epicardial activation, behavior, and plasticity and thereby optimize the adult response post-injury.
Electronic supplementary material
The online version of this article (doi:10.1186/s13287-016-0434-9) contains supplementary material, which is available to authorized users.
PMCID: PMC5129650  PMID: 27899163
Epicardium; In vitro model; Epithelial-to-mesenchymal transition; Human EPDCs; Cardiac development; TGFβ
2.  High levels of Hdmx promote cell growth in a subset of uveal melanomas 
The p53 tumor suppressor pathway is inactivated in cancer either via direct mutation or via deregulation of upstream regulators or downstream effectors. P53 mutations are rare in uveal melanoma. Here we investigated the role of the p53 inhibitor Hdmx in uveal melanoma. We found Hdmx over-expression in a subset of uveal melanoma cell lines and fresh-frozen tumor samples. Hdmx depletion resulted in cell-line dependent growth inhibition, apparently correlating with differential Hdm2 levels. Surprisingly, p53 knockdown hardly rescued cell cycle arrest and apoptosis induction upon Hdmx knockdown, whereas it effectively prevented growth suppression induced by the potent p53 activator Nutlin-3. In addition, two compounds inhibiting Hdmx function or expression, SAH-p53-8 and XI-011, also elicited a growth inhibitory effect in a partly p53-independent manner. These findings suggest a novel, growth-promoting function of Hdmx that does not rely on its ability to inhibit p53. We provide evidence for a contribution of p27 protein induction to the observed p53-independent G1 arrest in response to Hdmx knockdown. In conclusion, our study establishes the importance of Hdmx as an oncogene in a subset of uveal melanomas and widens the spectrum of its function beyond p53 inhibition.
PMCID: PMC3433101  PMID: 22957303
Uveal melanoma; Hdmx; p53; Nutlin-3; p27; SAH-p53-8; XI-011; retinoblastoma
3.  Oncogenic functions of hMDMX in in vitro transformation of primary human fibroblasts and embryonic retinoblasts 
Molecular Cancer  2011;10:111.
In around 50% of all human cancers the tumor suppressor p53 is mutated. It is generally assumed that in the remaining tumors the wild-type p53 protein is functionally impaired. The two main inhibitors of p53, hMDM2 (MDM2) and hMDMX (MDMX/MDM4) are frequently overexpressed in wild-type p53 tumors. Whereas the main activity of hMDM2 is to degrade p53 protein, its close homolog hMDMX does not degrade p53, but it represses its transcriptional activity. Here we study the role of hMDMX in the neoplastic transformation of human fibroblasts and embryonic retinoblasts, since a high number of retinoblastomas contain elevated hMDMX levels.
We made use of an in vitro transformation model using a retroviral system of RNA interference and gene overexpression in primary human fibroblasts and embryonic retinoblasts. Consecutive knockdown of RB and p53, overexpression of SV40-small t, oncogenic HRasV12 and HA-hMDMX resulted in a number of stable cell lines representing different stages of the transformation process, enabling a comparison between loss of p53 and hMDMX overexpression. The cell lines were tested in various assays to assess their oncogenic potential.
Both p53-knockdown and hMDMX overexpression accelerated proliferation and prevented growth suppression induced by introduction of oncogenic Ras, which was required for anchorage-independent growth and the ability to form tumors in vivo. Furthermore, we found that hMDMX overexpression represses basal p53 activity to some extent. Transformed fibroblasts with very high levels of hMDMX became largely resistant to the p53 reactivating drug Nutlin-3. The Nutlin-3 response of hMDMX transformed retinoblasts was intact and resembled that of retinoblastoma cell lines.
Our studies show that hMDMX has the essential properties of an oncogene. Its constitutive expression contributes to the oncogenic phenotype of transformed human cells. Its main function appears to be p53 inactivation. Therefore, developing new drugs targeting hMDMX is a valid approach to obtain new treatments for a subset of human tumors expressing wild-type p53.
PMCID: PMC3179748  PMID: 21910853
Transformation model; p53 pathway; tumorigenesis; hMDMX; hMDM2; retinoblastoma; Nutlin-3

Results 1-3 (3)