PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
Year of Publication
Document Types
1.  Efficient Library Construction by In Vivo Recombination with a Telomere-Originated Autonomously Replicating Sequence of Hansenula polymorpha 
A high frequency of transformation and an equal gene dosage between transformants are generally required for activity-based selection of mutants from a library obtained by directed evolution. An efficient library construction method was developed by using in vivo recombination in Hansenula polymorpha. Various linear sets of vectors and insert fragments were transformed and analyzed to optimize the in vivo recombination system. A telomere-originated autonomously replicating sequence (ARS) of H. polymorpha, reported as a recombination hot spot, facilitates in vivo recombination between the linear transforming DNA and chromosomes. In vivo recombination of two linear DNA fragments containing the telomeric ARS drastically increases the transforming frequency, up to 10-fold, compared to the frequency of circular plasmids. Direct integration of the one-end-recombined linear fragment into chromosomes produced transformants with single-copy gene integration, resulting in the same expression level for the reporter protein between transformants. This newly developed in vivo recombination system of H. polymorpha provides a suitable library for activity-based selection of mutants after directed evolution.
doi:10.1128/AEM.69.8.4448-4454.2003
PMCID: PMC169078  PMID: 12902228
2.  Integrative Transformation System for the Metabolic Engineering of the Sphingoid Base-Producing Yeast Pichia ciferrii 
We have developed an integrative transformation system for metabolic engineering of the tetraacetyl phytosphingosine (TAPS)-secreting yeast Pichia ciferrii. The system uses (i) a mutagenized ribosomal protein L41 gene of P. ciferrii as a dominant selection marker that confer resistance to the antibiotic cycloheximide and (ii) a ribosomal DNA (rDNA) fragment of P. ciferrii as a target for multicopy gene integration into the chromosome. A locus within the nontranscribed region located between 5S and 26S rDNAs was selected as the integration site. A maximum frequency of integrative transformation of approximately 1,350 transformants/μg of DNA was observed. To improve the de novo synthesis of sphingolipid, the LCB2 gene, encoding a subunit of serine palmitoyltransferase, which catalyzes the first committed step of sphingolipid synthesis, was cloned from P. ciferrii and overexpressed under the control of the P. ciferrii glyceraldehyde-3-phosphate dehydrogenase promoter. After transformation of an LCB2 gene expression cassette, several transformants that contained approximately five to seven copies of transforming DNA in the chromosome and exhibited about 50-fold increase in LCB2 mRNA relative to the wild type were identified. These transformants were observed to produce approximately two times more TAPS than the wild type.
doi:10.1128/AEM.69.2.812-819.2003
PMCID: PMC143681  PMID: 12570999

Results 1-2 (2)