PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-12 (12)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  The Application of Gaussian Mixture Models for Signal Quantification in MALDI-ToF Mass Spectrometry of Peptides 
PLoS ONE  2014;9(11):e111016.
Matrix assisted laser desorption/ionization time-of-flight (MALDI-TOF) coupled with stable isotope standards (SIS) has been used to quantify native peptides. This peptide quantification by MALDI-TOF approach has difficulties quantifying samples containing peptides with ion currents in overlapping spectra. In these overlapping spectra the currents sum together, which modify the peak heights and make normal SIS estimation problematic. An approach using Gaussian mixtures based on known physical constants to model the isotopic cluster of a known compound is proposed here. The characteristics of this approach are examined for single and overlapping compounds. The approach is compared to two commonly used SIS quantification methods for single compound, namely Peak Intensity method and Riemann sum area under the curve (AUC) method. For studying the characteristics of the Gaussian mixture method, Angiotensin II, Angiotensin-2-10, and Angiotenisn-1-9 and their associated SIS peptides were used. The findings suggest, Gaussian mixture method has similar characteristics as the two methods compared for estimating the quantity of isolated isotopic clusters for single compounds. All three methods were tested using MALDI-TOF mass spectra collected for peptides of the renin-angiotensin system. The Gaussian mixture method accurately estimated the native to labeled ratio of several isolated angiotensin peptides (5.2% error in ratio estimation) with similar estimation errors to those calculated using peak intensity and Riemann sum AUC methods (5.9% and 7.7%, respectively). For overlapping angiotensin peptides, (where the other two methods are not applicable) the estimation error of the Gaussian mixture was 6.8%, which is within the acceptable range. In summary, for single compounds the Gaussian mixture method is equivalent or marginally superior compared to the existing methods of peptide quantification and is capable of quantifying overlapping (convolved) peptides within the acceptable margin of error.
doi:10.1371/journal.pone.0111016
PMCID: PMC4221630  PMID: 25372836
2.  Lack of Renoprotective Effect of Chronic Intravenous Angiotensin-(1-7) or Angiotensin-(2-10) in a Rat Model of Focal Segmental Glomerulosclerosis 
PLoS ONE  2014;9(10):e110083.
Unopposed angiotensin (Ang) II-mediated cellular effects may lead to progressive glomerulosclerosis. While Ang-II can be locally generated in the kidneys, we previously showed that glomerular podocytes primarily convert Ang-I, the precursor of Ang-II, to Ang-(1-7) and Ang-(2-10), peptides that have been independently implicated in biological actions opposing those of Ang-II. Therefore, we hypothesized that Ang-(1-7) and Ang-(2-10) could be renoprotective in the fawn-hooded hypertensive rat, a model of focal segmental glomerulosclerosis. We evaluated the ability of 8–12 week-long intravenous administration of either Ang-(1-7) or Ang-(2-10) (100–400 ng/kg/min) to reduce glomerular injury in uni-nephrectomized fawn-hooded hypertensive rats, early or late in the disease. Vehicle-treated rats developed hypertension and lesions of focal segmental glomerulosclerosis. No reduction in glomerular damage was observed, as measured by either 24-hour urinary protein excretion or histological examination of glomerulosclerosis, upon Ang-(1-7) or Ang-(2-10) administration, regardless of peptide dose or disease stage. On the contrary, when given at 400 ng/kg/min, both peptides induced a further increase in systolic blood pressure. Content of Ang peptides was measured by parallel reaction monitoring in kidneys harvested at sacrifice. Exogenous administration of Ang-(1-7) and Ang-(2-10) did not lead to a significant increase in their corresponding intrarenal levels. However, the relative abundance of Ang-(1-7) with respect to Ang-II was increased in kidney homogenates of Ang-(1-7)-treated rats. We conclude that chronic intravenous administration of Ang-(1-7) or Ang-(2-10) does not ameliorate glomerular damage in a rat model of focal segmental glomerulosclerosis and may induce a further rise in blood pressure, potentially aggravating glomerular injury.
doi:10.1371/journal.pone.0110083
PMCID: PMC4206519  PMID: 25337950
3.  Evaluation of 32 urine biomarkers to predict the progression of acute kidney injury after cardiac surgery 
Kidney international  2013;85(2):431-438.
Biomarkers for acute kidney injury (AKI) have been used to predict the progression of AKI but a systematic comparison of the prognostic ability of each biomarkers alone or in combination has not been performed. In order to assess this, we measured the concentration of 32 candidate biomarkers in the urine of 95 patients with AKIN stage 1 after cardiac surgery. Urine markers were divided into eight groups based on the putative pathophysiologic mechanism they reflect. We then compared the ability of the markers alone or in combination to predict the primary outcome of worsening AKI or death (23 patients) and the secondary outcome of AKIN stage 3 or death (13 patients). IL-18 was the best predictor of both outcomes (AUC of 0.74 and 0.89). L-FABP (AUC of 0.67 and 0.85), NGAL (AUC of 0.72 and 0.83) and KIM-1 (AUC of 0.73 and 0.81) were also good predictors. Correlation between most of the markers was generally related to their predictive ability but KIM-1 had a relatively weak correlation with other markers. The combination of IL-18 and KIM-1 had a very good predictive value with an AUC of 0.93 to predict AKIN 3 or death. Thus, combination of IL-18 and KIM-1 would result in improved identification of high risk patients for enrollment in clinical trials.
doi:10.1038/ki.2013.333
PMCID: PMC3880389  PMID: 24005224
Kidney; renal failure; Outcomes; Postoperative care; Risk assessment; predictive modeling; biomarker discovery; Surgery; complications; Interleukin 18; Interleukin 6; Vascular endothelial growth factor; Monocyte chemotactic protein-1; Interleukin 1 receptor antagonist; Interleukin 8; Growth related oncogene alpha; Leukemia inhibitory factor; Interleukin 10; Eotaxin; Vascular cell adhesion molecule-1; RANTES; Regulated on activation; normal T cell expressed and secreted; Tumor necrosis factor alpha; Macrophage inflammatory protein-1alpha; Neutrophil gelatinase associated lipocalin; Kidney injury molecule-1; Liver type fatty acid binding protein; Hepatocyte growth factor; Netrin-1; Clusterin; Fetuin-A; Cystatin C; Albumin; Beta-2-microglobulin; Retinol binding protein; Alpha-1 antitrypsin; 8-Isoprostane; Trefoil factor 3; N-acetyl-beta-D-glucosaminidase; TRAIL; TNF-related apoptosis-inducing ligand
4.  Ratiometric Measurements of Adiponectin by Mass Spectrometry in Bottlenose Dolphins (Tursiops truncatus) with Iron Overload Reveal an Association with Insulin Resistance and Glucagon 
High molecular weight (HMW) adiponectin levels are reduced in humans with type 2 diabetes and insulin resistance. Similar to humans with insulin resistance, managed bottlenose dolphins (Tursiops truncatus) diagnosed with hemochromatosis (iron overload) have higher levels of 2 h post-prandial plasma insulin than healthy controls. A parallel reaction monitoring assay for dolphin serum adiponectin was developed based on tryptic peptides identified by mass spectrometry. Using identified post-translational modifications, a differential measurement was constructed. Total and unmodified adiponectin levels were measured in sera from dolphins with (n = 4) and without (n = 5) iron overload. This measurement yielded total adiponectin levels as well as site specific percent unmodified adiponectin that may inversely correlate with HMW adiponectin. Differences in insulin levels between iron overload cases and controls were observed 2 h post-prandial, but not during the fasting state. Thus, post-prandial as well as fasting serum adiponectin levels were measured to determine whether adiponectin and insulin would follow similar patterns. There was no difference in total adiponectin or percent unmodified adiponectin from case or control fasting animals. There was no difference in post-prandial total adiponectin levels between case and control dolphins (mean ± SD) at 763 ± 298 and 727 ± 291 pmol/ml, respectively (p = 0.91); however, percent unmodified adiponectin was significantly higher in post-prandial cases compared to controls (30.0 ± 6.3 versus 17.0 ± 6.6%, respectively; p = 0.016). Interestingly, both total and percent unmodified adiponectin were correlated with glucagon levels in controls (r = 0.999, p  < 0.001), but not in cases, which is possibly a reflection of insulin resistance. Although total adiponectin levels were not significantly different, the elevated percent unmodified adiponectin follows a trend similar to HMW adiponectin reported for humans with metabolic disorders.
doi:10.3389/fendo.2013.00132
PMCID: PMC3778387  PMID: 24065958
parallel reaction monitoring; marine mammal; assay; hemochromatosis; liver; diabetes
5.  Urine haptoglobin levels predict early renal functional decline in patients with type 2 diabetes 
Kidney international  2013;83(6):1136-1143.
Diabetic nephropathy is the leading cause of end stage renal disease. The urinary albumin to creatinine ratio is used as a predictor for the development of nephropathy but it is neither sensitive nor specific. Here we used liquid chromatography/mass spectrometry on urine of eight normoalbuminuric patients with type 2 diabetes from the VA Diabetes Trial to identify candidate markers for loss of renal function. Initial verification of 7 markers (agrin, haptoglobin, mannan-binding lectin serine protease 2, LAMP-2, angiotensinogen, NGAL and uromodulin) in the urine of an additional 30 patients showed that haptoglobin was the best predictor of early renal functional decline. We then measured this in the urine of 204 patients with type 2 diabetes who did not yet have significant kidney disease (eGFR stage 2 or better and an albumin to creatinine ratio less than 300 mg/g). In comparing the highest to lowest tertile, the odds ratio for having early renal function decline was 2.70 (CI 1.15, 6.32) using the haptoglobin to creatinine ratio compared to 2.50 (CI 1.14, 5.48) using the albumin to creatinine ratio after adjusting for treatment group and use of ACE inhibitors. Addition of the haptoglobin to creatinine ratio to a model using the albumin to creatinine ratio to predict early renal function decline resulted in improved predictive performance. Thus, the haptoglobin to creatinine ratio may be useful to predict patients with type 2 diabetes at risk of nephropathy prior to the development of macroalbuminuria or reduced GFR.
doi:10.1038/ki.2013.57
PMCID: PMC3672380  PMID: 23536133
Diabetes; diabetic nephropathy; type 2 diabetes; urine; biological markers; chronic kidney disease
6.  Premature atherosclerosis is associated with hypovitaminosis D and angiotensin converting enzyme inhibitor non-use in lupus patients 
Our ultimate goal is to identify and target modifiable risk factors that will reduce major cardiovascular events in African-American lupus patients. As a first step toward achieving this goal, this study was designed to explore risk factor models of preclinical atherosclerosis in a predominantly African-American group of SLE patients using variables historically associated with endothelial function in non-lupus populations.
51 subjects with SLE but without a history of clinical cardiovascular events were enrolled. At entry, a Framingham risk factor history and medication list were recorded. Sera and plasma samples were analyzed for lipids, lupus activity markers, and total 25-hydroxyvitamin D (25(OH)D) levels. Carotid ultrasound measurements were performed to determine total plaque area (TPA) in both carotids. Cases had TPA values above age-matched controls from a vascular prevention clinic population. Logistic regression and machine learning analyses were performed to create predictive models.
25(OH)D levels were significantly lower and SLE disease duration was significantly higher in cases. 25(OH)D levels inversely correlated with age-adjusted TPA. ACE-inhibitor non-use associated with case status. Logistic regression models containing ACE-inhibitor use, 25(OH)D levels, and LDL levels had a diagnostic accuracy of 84% for predicting accelerated atherosclerosis. Similar results were obtained with machine learning models, but hydroxychloroquine use associated with controls in these models.
This is the first study to demonstrate an association between atherosclerotic burden and 25(OH)D insufficiency or ACE-inhibitor non-use in lupus patients. These findings provide strong rationale for the study of ACE-inhibitors and vitamin D replenishment as preventive therapies in this high-risk population.
doi:10.1097/MAJ.0b013e31823fa7d9
PMCID: PMC3323721  PMID: 22222338
Systemic lupus erythematosus; Atherosclerosis; Vitamin D deficiency; Angiotensin converting enzyme inhibitors; Hypercholesterolemia
7.  Urinary angiotensinogen predicts adverse outcomes among acute kidney injury patients in the intensive care unit 
Critical Care  2013;17(2):R69.
Introduction
Acute kidney injury (AKI) is commonly observed in the intensive care unit (ICU), where it can be caused by a variety of factors. The objective of this study was to evaluate the prognostic value of urinary angiotensinogen, a candidate prognostic AKI biomarker identified in post-cardiac surgery patients, in this heterogeneous population.
Methods
Urinary angiotensinogen was measured by ELISA and corrected for urine creatinine in 45 patients who developed AKI in the ICU. Patients were grouped by AKI etiology, and the angiotensinogen-to-creatinine ratio (uAnCR) was compared among the groups using the Kruskal-Wallis test. The ability of uAnCR to predict the following endpoints was tested using the area under the ROC curve (AUC): the need for renal replacement therapy (RRT) or death, increased length of stay (defined as hospital discharge > 7 days or death ≤ 7 days from sample collection), and worsening AKI (defined as an increase in serum creatinine > 0.3 mg/dL after sample collection or RRT).
Results
uAnCR was significantly elevated in patients who met the composite outcome RRT or death (89.4 vs 25.4 ng/mg; P = 0.01), and it was a strong predictor of this outcome (AUC = 0.73). Patients with uAnCR values above the median for the cohort (55.21 ng/mg) had increased length of stay compared to patients with uAnCR ≤ 55.21 ng/mg (22 days vs 7 days after sample collection; P = 0.01). uAnCR was predictive of the outcome increased length of stay (AUC = 0.77). uAnCR was also a strong predictor of worsening of AKI (AUC = 0.77). The uAnCR of patients with pre-renal AKI was lower compared to patients with AKI of other causes (median uAnCR 11.3 vs 80.2 ng/mg; P = 0.02).
Conclusions
Elevated urinary angiotensinogen is associated with adverse events in AKI patients in the ICU. It could be used to identify high risk patients who would benefit from timely intervention that could improve their outcomes.
doi:10.1186/cc12612
PMCID: PMC3672721  PMID: 23587112
8.  Serum profiling by MALDI-TOF mass spectrometry as a diagnostic tool for domoic acid toxicosis in California sea lions 
Proteome Science  2012;10:18.
Background
There are currently no reliable markers of acute domoic acid toxicosis (DAT) for California sea lions. We investigated whether patterns of serum peptides could diagnose acute DAT. Serum peptides were analyzed by MALDI-TOF mass spectrometry from 107 sea lions (acute DAT n = 34; non-DAT n = 73). Artificial neural networks (ANN) were trained using MALDI-TOF data. Individual peaks and neural networks were qualified using an independent test set (n = 20).
Results
No single peak was a good classifier of acute DAT, and ANN models were the best predictors of acute DAT. Performance measures for a single median ANN were: sensitivity, 100%; specificity, 60%; positive predictive value, 71%; negative predictive value, 100%. When 101 ANNs were combined and allowed to vote for the outcome, the performance measures were: sensitivity, 30%; specificity, 100%; positive predictive value, 100%; negative predictive value, 59%.
Conclusions
These results suggest that MALDI-TOF peptide profiling and neural networks can perform either as a highly sensitive (100% negative predictive value) or a highly specific (100% positive predictive value) diagnostic tool for acute DAT. This also suggests that machine learning directed by populations of predictive models offer the ability to modulate the predictive effort into a specific type of error.
doi:10.1186/1477-5956-10-18
PMCID: PMC3338078  PMID: 22429742
Serum peptides; Neural network; Zalophus californianus; Neurotoxin
9.  Overcoming the Effects of Matrix Interference in the Measurement of Urine Protein Analytes 
Biomarker Insights  2012;7:1-8.
Using multiplex bead assays to measure urine proteins has a great potential for biomarker discovery, but substances in urine (the matrix) can interfere with assay measurements. By comparing the recovery of urine spiked with known quantities of several common analytes, this study demonstrated that the urine matrix variably interfered with the accurate measurement of low abundance proteins. Dilution of the urine permitted a more accurate measure of these proteins, equivalent to the standard dilution technique when the diluted analytes were above the limits of detection of the assay. Therefore, dilution can be used as an effective technique for over-coming urine matrix effects in urine immunoassays. These results may be applicable to other biological fluids in which matrix components interfere with assay performance.
doi:10.4137/BMI.S8703
PMCID: PMC3290108  PMID: 22403482
biomarkers; body fluids urine; analysis/urine; standard addition; assay validation
10.  Identification of Diagnostic Urinary Biomarkers for Acute Kidney Injury 
Acute kidney injury (AKI) is an important cause of death among hospitalized patients. The two most common causes of AKI are acute tubular necrosis (ATN) and prerenal azotemia (PRA). Appropriate diagnosis of the disease is important but often difficult. We analyzed urine proteins by 2-DE from 38 patients with AKI. Patients were randomly assigned to a training set, an internal test set or an external validation set. Spot abundances were analyzed by artificial neural networks (ANN) to identify biomarkers which differentiate between ATN and PRA. When the trained neural network algorithm was tested against the training data it identified the diagnosis for 16/18 patients in the training set and all 10 patients in the internal test set. The accuracy was validated in the novel external set of patients where 9/10 subjects were correctly diagnosed including 5/5 with ATN and 4/5 with PRA. Plasma retinol binding protein (PRBP) was identified in one spot and a fragment of albumin and PRBP in the other. These proteins are candidate markers for diagnostic assays of AKI.
doi:10.231/JIM.0b013e3181d473e7
PMCID: PMC2864920  PMID: 20224435
Acute kidney injury; Biomarkers; Diagnosis; Kidney; Urine
11.  Sources of Variability among Replicate Samples Separated by Two-Dimensional Gel Electrophoresis 
Two-dimensional gel electrophoresis (2DE) offers high-resolution separation for intact proteins. However, variability in the appearance of spots can limit the ability to identify true differences between conditions. Variability can occur at a number of levels. Individual samples can differ because of biological variability. Technical variability can occur during protein extraction, processing, or storage. Another potential source of variability occurs during analysis of the gels and is not a result of any of the causes of variability named above. We performed a study designed to focus only on the variability caused by analysis. We separated three aliquots of rat left ventricle and analyzed differences in protein abundance on the replicate 2D gels. As the samples loaded on each gel were identical, differences in protein abundance are caused by variability in separation or interpretation of the gels. Protein spots were compared across gels by quantile values to determine differences. Fourteen percent of spots had a maximum difference in intensity of 0.4 quantile values or more between replicates. We then looked individually at the spots to determine the cause of differences between the measured intensities. Reasons for differences were: failure to identify a spot (59%), differences in spot boundaries (13%), difference in the peak height (6%), and a combination of these factors (21). This study demonstrates that spot identification and characterization make major contributions to variability seen with 2DE. Methods to highlight why measured protein spot abundance is different could reduce these errors.
PMCID: PMC2841997  PMID: 20357976
heart; proteomics; reproducibility; protein
12.  Comparison of Variability Associated with Sample Preparation in Two-Dimensional Gel Electrophoresis of Cardiac Tissue 
Variability is a major complicating factor in analysis by two-dimensional gel electrophoresis. Improvements in methodologies have focused on improving individual gel quality rather than reproducibility. We homogenized rat cardiac tissue and rehydrated using a matrix of buffers to determine the optimal sample conditions. Six buffers were used to solubilize the proteins. Solubilized proteins were separated by isoelectric focusing using four buffers. Gels were run in triplicate to assess the method of preparation yielding the least variability. Number of spots and variability were different between conditions. Proteins solubilized in a buffer containing 5 M urea, 2M thiourea, 2% CHAPS, 2% SB 3–10, ampholytes, DTT, and protease inhibitors and focused in a buffer containing 9 M urea and 4% NP40 had the lowest coefficient of variation. Variability was compared across isoelectric point ranges and was different. Minimizing technical variability in two-dimensional polyacrylamide gel electrophoresis is critical to identify differences between conditions. Sample preparation should be optimized to minimize variability as well as to maximize the number of spots seen.
PMCID: PMC2291783  PMID: 16870710
Reproducibility; variability: two-dimensional gel electrophoresis; heart

Results 1-12 (12)