PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Sources of Variability among Replicate Samples Separated by Two-Dimensional Gel Electrophoresis 
Two-dimensional gel electrophoresis (2DE) offers high-resolution separation for intact proteins. However, variability in the appearance of spots can limit the ability to identify true differences between conditions. Variability can occur at a number of levels. Individual samples can differ because of biological variability. Technical variability can occur during protein extraction, processing, or storage. Another potential source of variability occurs during analysis of the gels and is not a result of any of the causes of variability named above. We performed a study designed to focus only on the variability caused by analysis. We separated three aliquots of rat left ventricle and analyzed differences in protein abundance on the replicate 2D gels. As the samples loaded on each gel were identical, differences in protein abundance are caused by variability in separation or interpretation of the gels. Protein spots were compared across gels by quantile values to determine differences. Fourteen percent of spots had a maximum difference in intensity of 0.4 quantile values or more between replicates. We then looked individually at the spots to determine the cause of differences between the measured intensities. Reasons for differences were: failure to identify a spot (59%), differences in spot boundaries (13%), difference in the peak height (6%), and a combination of these factors (21). This study demonstrates that spot identification and characterization make major contributions to variability seen with 2DE. Methods to highlight why measured protein spot abundance is different could reduce these errors.
PMCID: PMC2841997  PMID: 20357976
heart; proteomics; reproducibility; protein
2.  Prediction of urinary protein markers in lupus nephritis 
Kidney international  2005;68(6):2588-2592.
Background
Lupus nephritis is divided into six classes and scored according to activity and chronicity indices based on histologic findings. Treatment differs based on the pathologic findings. Renal biopsy is currently the only way to accurately predict class and activity and chronicity indices. We propose to use patterns of abundance of urine proteins to identify class and disease indices.
Methods
Urine was collected from 20 consecutive patients immediately prior to biopsy for evaluation of lupus nephritis. The International Society of Nephrology/Renal Pathology Society (ISN/RPS) class of lupus nephritis, activity, and chronicity indices were determined by a renal pathologist. Proteins were separated by two-dimensional gel electrophoresis. Artificial neural networks were trained on normalized spot abundance values.
Results
Biopsy specimens were classified in the database according to ISN/RPS class, activity, and chronicity. Nine samples had characteristics of more than one class present. Receiver operating characteristic (ROC) curves of the trained networks demonstrated areas under the curve ranging from 0.85 to 0.95. The sensitivity and specificity for the ISN/RPS classes were class II 100%, 100%; III 86%, 100%; IV 100%, 92%; and V 92%, 50%. Activity and chronicity indices had r values of 0.77 and 0.87, respectively. A list of spots was obtained that provided diagnostic sensitivity to the analysis.
Conclusion
We have identified a list of protein spots that can be used to develop a clinical assay to predict ISN/RPS class and chronicity for patients with lupus nephritis. An assay based on antibodies against these spots could eliminate the need for renal biopsy, allow frequent evaluation of disease status, and begin specific therapy for patients with lupus nephritis.
doi:10.1111/j.1523-1755.2005.00730.x
PMCID: PMC2667626  PMID: 16316334
lupus nephritis; biomarkers; urine; electrophoresis; two-dimensional gel
3.  Comparison of Variability Associated with Sample Preparation in Two-Dimensional Gel Electrophoresis of Cardiac Tissue 
Variability is a major complicating factor in analysis by two-dimensional gel electrophoresis. Improvements in methodologies have focused on improving individual gel quality rather than reproducibility. We homogenized rat cardiac tissue and rehydrated using a matrix of buffers to determine the optimal sample conditions. Six buffers were used to solubilize the proteins. Solubilized proteins were separated by isoelectric focusing using four buffers. Gels were run in triplicate to assess the method of preparation yielding the least variability. Number of spots and variability were different between conditions. Proteins solubilized in a buffer containing 5 M urea, 2M thiourea, 2% CHAPS, 2% SB 3–10, ampholytes, DTT, and protease inhibitors and focused in a buffer containing 9 M urea and 4% NP40 had the lowest coefficient of variation. Variability was compared across isoelectric point ranges and was different. Minimizing technical variability in two-dimensional polyacrylamide gel electrophoresis is critical to identify differences between conditions. Sample preparation should be optimized to minimize variability as well as to maximize the number of spots seen.
PMCID: PMC2291783  PMID: 16870710
Reproducibility; variability: two-dimensional gel electrophoresis; heart

Results 1-3 (3)