Search tips
Search criteria

Results 1-19 (19)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  L-type Ca2+ channels in heart and brain 
L-type calcium channels (Cav1) represent one of the three major classes (Cav1–3) of voltage-gated calcium channels. They were identified as the target of clinically used calcium channel blockers (CCBs; so-called calcium antagonists) and were the first class accessible to biochemical characterization. Four of the 10 known α1 subunits (Cav1.1–Cav1.4) form the pore of L-type calcium channels (LTCCs) and contain the high-affinity drug-binding sites for dihydropyridines and other chemical classes of organic CCBs. In essentially all electrically excitable cells one or more of these LTCC isoforms is expressed, and therefore it is not surprising that many body functions including muscle, brain, endocrine, and sensory function depend on proper LTCC activity. Gene knockouts and inherited human diseases have allowed detailed insight into the physiological and pathophysiological role of these channels. Genome-wide association studies and analysis of human genomes are currently providing even more hints that even small changes of channel expression or activity may be associated with disease, such as psychiatric disease or cardiac arrhythmias. Therefore, it is important to understand the structure–function relationship of LTCC isoforms, their differential contribution to physiological function, as well as their fine-tuning by modulatory cellular processes.
PMCID: PMC3968275
2.  Functional properties and modulation of extracellular epitope-tagged CaV2.1 voltage-gated calcium channels 
Channels (Austin, Tex.)  2008;2(6):461-473.
Depolarisation-induced Ca2+ influx into electrically excitable cells is determined by the density of voltage-gated Ca2+ channels at the cell surface. Surface expression is modulated by physiological stimuli as well as by drugs and can be altered under pathological conditions. Extracellular epitope-tagging of channel subunits allows to quantify their surface expression and to distinguish surface channels from those in intracellular compartments. Here we report the first systematic characterisation of extracellularly epitope-tagged CaV2.1 channels. We identified a permissive region in the pore-loop of repeat IV within the CaV2.1 α1 subunit, which allowed integration of several different tags (hemagluttinine [HA], double HA; 6-histidine tag [His], 9-His, bungarotoxin-binding site) without compromising α1 subunit protein expression (in transfected tsA-201 cells) and function (after expression in X. laevis oocytes). Immunofluorescence studies revealed that the double-HA tagged construct (1722-HAGHA) was targeted to presynaptic sites in transfected cultured hippocampal neurons as expected for CaV2.1 channels. We also demonstrate that introduction of tags into this permissive position creates artificial sites for channel modulation. This was demonstrated by partial inhibition of 1722-HA channel currents with anti-HA antibodies and the concentration-dependent stimulation or partial inhibition by Ni-nitrilo triacetic acid (NTA) and novel bulkier derivatives (Ni-trisNTA, Ni-tetrakisNTA, Ni-nitro-o-phenyl-bisNTA, Ni-nitro-p-phenyl-bisNTA). Therefore our data also provide evidence for the concept that artificial modulatory sites for small ligands can be introduced into voltage-gated Ca2+ channel for their selective modulation.
PMCID: PMC3942855  PMID: 18797193
voltage-gated calcium channels; extracellular epitope-tagging; calcium channel blockers; nickel-NTA; immunocytochemistry; live cell staining
3.  Lonely but diverse 
Channels  2013;7(3):133-134.
PMCID: PMC3710339  PMID: 23567254
6.  Pacemaker activity and ionic currents in mouse atrioventricular node cells 
Channels  2011;5(3):241-250.
It is well established that pacemaker activity of the sino-atrial node (SAN) initiates the heartbeat. However, the atrioventricular node (AVN) can generate viable pacemaker activity in case of SAN failure, but we have limited knowledge of the ionic bases of AVN automaticity. We characterized pacemaker activity and ionic currents in automatic myocytes of the mouse AVN. Pacemaking of AVN cells (AVNCs) was lower than that of SAN pacemaker cells (SANCs), both in control conditions and upon perfusion of isoproterenol (ISO). Block of INa by tetrodotoxin (TTX) or of ICa,L by isradipine abolished AVNCs pacemaker activity. TTX-resistant (INar) and TTX-sensitive (INas) Na+ currents were recorded in mouse AVNCs, as well as T-(ICa,T) and L-type (ICa,L) Ca2+ currents. ICa,L density was lower than in SANCs (51%). The density of the hyperpolarization-activated current, (If) and that of the fast component of the delayed rectifier current (IKr) were, respectively, lower (52%) and higher (53%) in AVNCs than in SANCs. Pharmacological inhibition of If by 3 µM ZD-7228 reduced pacemaker activity by 16%, suggesting a relevant role for If in AVNCs automaticity. Some AVNCs expressed also moderate densities of the transient outward K+ current (Ito). In contrast, no detectable slow component of the delayed rectifier current (IKs) could be recorded in AVNCs. The lower densities of If and ICa,L, as well as higher expression of IKr in AVNCs than in SANCs may contribute to the intrinsically slower AVNCs pacemaking than that of SANCs.
PMCID: PMC3225753  PMID: 21406959
atrioventricular node; sino-atrial node; pacemaker activity; ion channels; electrophysiology; conduction; heart rate; Ca2+ channels; Na+ channels; f-channels; K+ channels
7.  Functional roles of Cav1.3, Cav3.1 and HCN channels in automaticity of mouse atrioventricular cells 
Channels  2011;5(3):251-261.
The atrioventricular node controls cardiac impulse conduction and generates pacemaker activity in case of failure of the sino-atrial node. Understanding the mechanisms of atrioventricular automaticity is important for managing human pathologies of heart rate and conduction. However, the physiology of atrioventricular automaticity is still poorly understood. We have investigated the role of three key ion channel-mediated pacemaker mechanisms namely, Cav1.3, Cav3.1 and HCN channels in automaticity of atrioventricular node cells (AVNCs). We studied atrioventricular conduction and pacemaking of AVNCs in wild-type mice and mice lacking Cav3.1 (Cav3.1−/−), Cav1.3 (Cav1.3−/−), channels or both (Cav1.3−/−/Cav3.1−/−). The role of HCN channels in the modulation of atrioventricular cells pacemaking was studied by conditional expression of dominant-negative HCN4 channels lacking cAMP sensitivity. Inactivation of Cav3.1 channels impaired AVNCs pacemaker activity by favoring sporadic block of automaticity leading to cellular arrhythmia. Furthermore, Cav3.1 channels were critical for AVNCs to reach high pacemaking rates under isoproterenol. Unexpectedly, Cav1.3 channels were required for spontaneous automaticity, because Cav1.3−/− and Cav1.3−/−/Cav3.1−/− AVNCs were completely silent under physiological conditions. Abolition of the cAMP sensitivity of HCN channels reduced automaticity under basal conditions, but maximal rates of AVNCs could be restored to that of control mice by isoproterenol. In conclusion, while Cav1.3 channels are required for automaticity, Cav3.1 channels are important for maximal pacing rates of mouse AVNCs. HCN channels are important for basal AVNCs automaticity but do not appear to be determinant for β-adrenergic regulation.
PMCID: PMC3225754  PMID: 21406960
genetically-engineered mice; pacemaker activity; atrioventricular node; congenital heart block; sino-atrial node dysfunction; ion channels; Cav1.3 channels; Cav3.1 channels; HCN channels; electrophysiology; conduction; heart rate
8.  Structural determinants of CaV1.3 L-type calcium channel gating 
Channels  2012;6(3):197-205.
A C-terminal modulatory domain (CTM) tightly regulates the biophysical properties of Cav1.3 L-type Ca2+ channels, in particular the voltage dependence of activation (V0.5) and Ca2+ dependent inactivation (CDI). A functional CTM is present in the long C-terminus of human and mouse Cav1.3 (Cav1.3L), but not in a rat long cDNA clone isolated from superior cervical ganglia neurons (rCav1.3scg). We therefore addressed the question if this represents a species-difference and compared the biophysical properties of rCav1.3scg with a rat cDNA isolated from rat pancreas (rCav1.3L).
When expressed in tsA-201 cells under identical experimental conditions rCav1.3L exhibited Ca2+ current properties indistinguishable from human and mouse Cav1.3L, compatible with the presence of a functional CTM. In contrast, rCav1.3scg showed gating properties similar to human short splice variants lacking a CTM. rCav1.3scg differs from rCav1.3L at three single amino acid (aa) positions, one alternative spliced exon (exon31), and a N-terminal polymethionine stretch with two additional lysines. Two aa (S244, A2075) in rCav1.3scg explained most of the functional differences to rCav1.3L. Their mutation to the corresponding residues in rCav1.3L (G244, V2075) revealed that both contributed to the more negative V0.5, but caused opposite effects on CDI. A2075 (located within a region forming the CTM) additionally permitted higher channel open probability. The cooperative action in the double-mutant restored gating properties similar to rCav1.3L. We found no evidence for transcripts containing one of the single rCav1.3scg mutations in rat superior cervical ganglion preparations. However, the rCav1.3scg variant provided interesting insight into the structural machinery involved in Cav1.3 gating.
PMCID: PMC3431584  PMID: 22760075
cacna1d; Cav1.3; voltage-gated Ca2+ channels; species differences; gating; mutagenesis
9.  Functional Properties of a Newly Identified C-terminal Splice Variant of Cav1.3 L-type Ca2+ Channels* 
The Journal of Biological Chemistry  2011;286(49):42736-42748.
An intramolecular interaction between a distal (DCRD) and a proximal regulatory domain (PCRD) within the C terminus of long Cav1.3 L-type Ca2+ channels (Cav1.3L) is a major determinant of their voltage- and Ca2+-dependent gating kinetics. Removal of these regulatory domains by alternative splicing generates Cav1.342A channels that activate at a more negative voltage range and exhibit more pronounced Ca2+-dependent inactivation. Here we describe the discovery of a novel short splice variant (Cav1.343S) that is expressed at high levels in the brain but not in the heart. It lacks the DCRD but, in contrast to Cav1.342A, still contains PCRD. When expressed together with α2δ1 and β3 subunits in tsA-201 cells, Cav1.343S also activated at more negative voltages like Cav1.342A but Ca2+-dependent inactivation was less pronounced. Single channel recordings revealed much higher channel open probabilities for both short splice variants as compared with Cav1.3L. The presence of the proximal C terminus in Cav1.343S channels preserved their modulation by distal C terminus-containing Cav1.3- and Cav1.2-derived C-terminal peptides. Removal of the C-terminal modulation by alternative splicing also induced a faster decay of Ca2+ influx during electrical activities mimicking trains of neuronal action potentials. Our findings extend the spectrum of functionally diverse Cav1.3 L-type channels produced by tissue-specific alternative splicing. This diversity may help to fine tune Ca2+ channel signaling and, in the case of short variants lacking a functional C-terminal modulation, prevent excessive Ca2+ accumulation during burst firing in neurons. This may be especially important in neurons that are affected by Ca2+-induced neurodegenerative processes.
PMCID: PMC3234942  PMID: 21998310
Alternative Splicing; Calcium Channels; Calcium Signaling; Cell Signaling; Ion Channels; CaV1.3; L-type Calcium Channels; Alternative Splicing; Cellular Excitability; Ion Channels
13.  Activity and calcium regulate nuclear targeting of the calcium channel β4b subunit in nerve and muscle cells 
Channels (Austin, Tex.)  2009;3(5):343-355.
Auxiliary β subunits are critical determinants of membrane expression and gating properties of voltage-gated calcium channels. Mutations in the β4 subunit gene cause ataxia and epilepsy. However, the specific function of β4 in neurons and its causal relation to neurological diseases are unknown. Here we report the localization of the β4 subunit in the nuclei of cerebellar granule and Purkinje cells. β4b was the only β isoform showing nuclear targeting when expressed in neurons and skeletal myotubes. Its specific nuclear targeting property was mapped to an N-terminal double-arginine motif, which was necessary and sufficient for targeting β subunits into the nucleus. Spontaneous electrical activity and calcium influx negatively regulated β4b nuclear localization by a CRM-1-dependent nuclear export mechanism. The activity-dependent shuttling of β4b into and out of the nucleus indicates a specific role of this β subunit in neurons, in communicating the activity of calcium channels to the nucleus.
PMCID: PMC2853709  PMID: 19755859
voltage-gated calcium channels; CACNB4; Ca2+; nuclear export; hippocampal neurons; cerebellum
14.  Voltage-Dependent Calcium Channel CaV1.3 Subunits Regulate the Light Peak of the Electroretinogram 
Journal of neurophysiology  2007;97(5):3731-3735.
In response to light, the mouse retinal pigment epithelium (RPE) generates a series of slow changes in potential that are referred to as the c-wave, fast oscillation (FO), and light peak (LP) of the electroretinogram (ERG). The LP is generated by a depolarization of the basolateral RPE plasma membrane by the activation of a calcium-sensitive chloride conductance. We have previously shown that the LP is reduced in both mice and rats by nimodipine, which blocks voltage-dependent calcium channels (VDCCs) and is abnormal in lethargic mice, carrying a null mutation in the calcium channel β4 subunit. To define the α1 subunit involved in this process, we examined mice lacking CaV1.3. In comparison with wild-type (WT) control littermates, LPs were reduced in CaV1.3−/− mice. This pattern matched closely with that previously noted in lethargic mice, confirming a role for VDCCs in regulating the signaling pathway that culminates in LP generation. These abnormalities do not reflect a defect in rod photoreceptor activity, which provides the input to the RPE to generate the c-wave, FO, and LP, because ERG a-waves were comparable in WT and CaV1.3−/− littermates. Our results identify CaV1.3 as the principal pore-forming subunit of VDCCs involved in stimulating the ERG LP.
PMCID: PMC2846711  PMID: 17376851
15.  Channelopathies in Cav1.1, Cav1.3, and Cav1.4 voltage-gated L-type Ca2+ channels 
Pflugers Archiv   2010;460(2):361-374.
Voltage-gated Ca2+ channels couple membrane depolarization to Ca2+-dependent intracellular signaling events. This is achieved by mediating Ca2+ ion influx or by direct conformational coupling to intracellular Ca2+ release channels. The family of Cav1 channels, also termed L-type Ca2+ channels (LTCCs), is uniquely sensitive to organic Ca2+ channel blockers and expressed in many electrically excitable tissues. In this review, we summarize the role of LTCCs for human diseases caused by genetic Ca2+ channel defects (channelopathies). LTCC dysfunction can result from structural aberrations within their pore-forming α1 subunits causing hypokalemic periodic paralysis and malignant hyperthermia sensitivity (Cav1.1 α1), incomplete congenital stationary night blindness (CSNB2; Cav1.4 α1), and Timothy syndrome (Cav1.2 α1; reviewed separately in this issue). Cav1.3 α1 mutations have not been reported yet in humans, but channel loss of function would likely affect sinoatrial node function and hearing. Studies in mice revealed that LTCCs indirectly also contribute to neurological symptoms in Ca2+ channelopathies affecting non-LTCCs, such as Cav2.1 α1 in tottering mice. Ca2+ channelopathies provide exciting disease-related molecular detail that led to important novel insight not only into disease pathophysiology but also to mechanisms of channel function.
PMCID: PMC2883925  PMID: 20213496
Channels; Channel gating; Channel activity; Neuronal excitability
18.  Modulation of Voltage- and Ca2+-dependent Gating of CaV1.3 L-type Calcium Channels by Alternative Splicing of a C-terminal Regulatory Domain* 
The Journal of Biological Chemistry  2008;283(30):20733-20744.
Low voltage activation of CaV1.3 L-type Ca2+ channels controls excitability in sensory cells and central neurons as well as sinoatrial node pacemaking. CaV1.3-mediated pacemaking determines neuronal vulnerability of dopaminergic striatal neurons affected in Parkinson disease. We have previously found that in CaV1.4 L-type Ca2+ channels, activation, voltage, and calcium-dependent inactivation are controlled by an intrinsic distal C-terminal modulator. Because alternative splicing in the CaV1.3 α1 subunit C terminus gives rise to a long (CaV1.342) and a short form (CaV1.342A), we investigated if a C-terminal modulatory mechanism also controls CaV1.3 gating. The biophysical properties of both splice variants were compared after heterologous expression together with β3 and α2δ1 subunits in HEK-293 cells. Activation of calcium current through CaV1.342A channels was more pronounced at negative voltages, and inactivation was faster because of enhanced calcium-dependent inactivation. By investigating several CaV1.3 channel truncations, we restricted the modulator activity to the last 116 amino acids of the C terminus. The resulting CaV1.3ΔC116 channels showed gating properties similar to CaV1.342A that were reverted by co-expression of the corresponding C-terminal peptide C116. Fluorescence resonance energy transfer experiments confirmed an intramolecular protein interaction in the C terminus of CaV1.3 channels that also modulates calmodulin binding. These experiments revealed a novel mechanism of channel modulation enabling cells to tightly control CaV1.3 channel activity by alternative splicing. The absence of the C-terminal modulator in short splice forms facilitates CaV1.3 channel activation at lower voltages expected to favor CaV1.3 activity at threshold voltages as required for modulation of neuronal firing behavior and sinoatrial node pacemaking.
PMCID: PMC2475692  PMID: 18482979
19.  Isoform-specific regulation of mood behavior and pancreatic β cell and cardiovascular function by L-type Ca2+ channels  
Journal of Clinical Investigation  2004;113(10):1430-1439.
Cav1.2 and Cav1.3 L-type Ca2+ channels (LTCCs) are believed to underlie Ca2+ currents in brain, pancreatic β cells, and the cardiovascular system. In the CNS, neuronal LTCCs control excitation-transcription coupling and neuronal plasticity. However, the pharmacotherapeutic implications of CNS LTCC modulation are difficult to study because LTCC modulators cause card iovascular (activators and blockers) and neurotoxic (activators) effects. We selectively eliminated high dihydropyridine (DHP) sensitivity from Cav1.2 α1 subunits (Cav1.2DHP–/–) without affecting function and expression. This allowed separation of the DHP effects of Cav1.2 from those of Cav1.3 and other LTCCs. DHP effects on pancreatic β cell LTCC currents, insulin secretion, cardiac inotropy, and arterial smooth muscle contractility were lost in Cav1.2DHP–/– mice, which rules out a direct role of Cav1.3 for these physiological processes. Using Cav1.2DHP–/– mice, we established DHPs as mood-modifying agents: LTCC activator–induced neurotoxicity was abolished and disclosed a depression-like behavioral effect without affecting spontaneous locomotor activity. LTCC activator BayK 8644 (BayK) activated only a specific set of brain areas. In the ventral striatum, BayK-induced release of glutamate and 5-HT, but not dopamine and noradrenaline, was abolished. This animal model provides a useful tool to elucidate whether Cav1.3-selective channel modulation represents a novel pharmacological approach to modify CNS function without major peripheral effects.
PMCID: PMC406526  PMID: 15146240

Results 1-19 (19)