Search tips
Search criteria

Results 1-25 (42)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
1.  Cholinergic modulation of the medial prefrontal cortex: the role of nicotinic receptors in attention and regulation of neuronal activity 
Acetylcholine (ACh) release in the medial prefrontal cortex (mPFC) is crucial for normal cognitive performance. Despite the fact that many have studied how ACh affects neuronal processing in the mPFC and thereby influences attention behavior, there is still a lot unknown about how this occurs. Here we will review the evidence that cholinergic modulation of the mPFC plays a role in attention and we will summarize the current knowledge about the role between ACh receptors (AChRs) and behavior and how ACh receptor activation changes processing in the cortical microcircuitry. Recent evidence implicates fast phasic release of ACh in cue detection and attention. This review will focus mainly on the fast ionotropic nicotinic receptors and less on the metabotropic muscarinic receptors. Finally, we will review limitations of the existing studies and address how innovative technologies might push the field forward in order to gain understanding into the relation between ACh, neuronal activity and behavior.
PMCID: PMC3949318  PMID: 24653678
acetylcholine; nicotinic receptors; medial prefrontal cortex; attention; neurophysiology
2.  Illuminating the role of cholinergic signaling in circuits of attention and emotionally salient behaviors 
Acetylcholine (ACh) signaling underlies specific aspects of cognitive functions and behaviors, including attention, learning, memory and motivation. Alterations in ACh signaling are involved in the pathophysiology of multiple neuropsychiatric disorders. In the central nervous system, ACh transmission is mainly guaranteed by dense innervation of select cortical and subcortical regions from disperse groups of cholinergic neurons within the basal forebrain (BF; e.g., diagonal band, medial septal, nucleus basalis) and the pontine-mesencephalic nuclei, respectively. Despite the fundamental role of cholinergic signaling in the CNS and the long standing knowledge of the organization of cholinergic circuitry, remarkably little is known about precisely how ACh release modulates cortical and subcortical neural activity and the behaviors these circuits subserve. Growing interest in cholinergic signaling in the CNS focuses on the mechanism(s) of action by which endogenously released ACh regulates cognitive functions, acting as a neuromodulator and/or as a direct transmitter via nicotinic and muscarinic receptors. The development of optogenetic techniques has provided a valuable toolbox with which we can address these questions, as it allows the selective manipulation of the excitability of cholinergic inputs to the diverse array of cholinergic target fields within cortical and subcortical domains. Here, we review recent papers that use the light-sensitive opsins in the cholinergic system to elucidate the role of ACh in circuits related to attention and emotionally salient behaviors. In particular, we highlight recent optogenetic studies which have tried to disentangle the precise role of ACh in the modulation of cortical-, hippocampal- and striatal-dependent functions.
PMCID: PMC4209819  PMID: 25386136
acetylcholine; optogenetics; nicotinic receptors; limbic circuitries; attention
3.  Glutamatergic synaptic plasticity in the mesocorticolimbic system in addiction 
Addictive drugs remodel the brain’s reward circuitry, the mesocorticolimbic dopamine (DA) system, by inducing widespread adaptations of glutamatergic synapses. This drug-induced synaptic plasticity is thought to contribute to both the development and the persistence of addiction. This review highlights the synaptic modifications that are induced by in vivo exposure to addictive drugs and describes how these drug-induced synaptic changes may contribute to the different components of addictive behavior, such as compulsive drug use despite negative consequences and relapse. Initially, exposure to an addictive drug induces synaptic changes in the ventral tegmental area (VTA). This drug-induced synaptic potentiation in the VTA subsequently triggers synaptic changes in downstream areas of the mesocorticolimbic system, such as the nucleus accumbens (NAc) and the prefrontal cortex (PFC), with further drug exposure. These glutamatergic synaptic alterations are then thought to mediate many of the behavioral symptoms that characterize addiction. The later stages of glutamatergic synaptic plasticity in the NAc and in particular in the PFC play a role in maintaining addiction and drive relapse to drug-taking induced by drug-associated cues. Remodeling of PFC glutamatergic circuits can persist into adulthood, causing a lasting vulnerability to relapse. We will discuss how these neurobiological changes produced by drugs of abuse may provide novel targets for potential treatment strategies for addiction.
PMCID: PMC4299443  PMID: 25653591
addiction; drugs of abuse; synaptic plasticity; glutamate; dopamine; ventral tegmental area; nucleus accumbens; prefrontal cortex
4.  Nicotine Exposure during Adolescence Leads to Short- and Long-Term Changes in Spike Timing-Dependent Plasticity in Rat Prefrontal Cortex 
Adolescence is a critical period of brain development during which maturation of areas involved in cognitive functioning, such as the medial prefrontal cortex (mPFC), is still ongoing. Tobacco smoking during this age can compromise the normal course of prefrontal development and lead to cognitive impairments in later life. Recently, we reported that nicotine exposure during adolescence results in a short-term increase and lasting reduction in synaptic mGluR2 levels in the rat mPFC, causing attention deficits during adulthood. It is unknown how changed synaptic mGluR2 levels after adolescent nicotine exposure affect the ability of mPFC synapses to undergo long-term synaptic plasticity. Here, we addressed this question. To model nicotine exposure, adolescent (P34–P43) or adult (P60–P69) rats were treated with nicotine injections three times per day for 10 d. We found that, both during acute activation of nicotinic receptors in the adolescent mPFC as well as immediately following nicotine treatment during adolescence, long-term plasticity in response to timed presynaptic and postsynaptic activity (tLTP) was strongly reduced. In contrast, in the mPFC of adult rats 5 weeks after they received nicotine treatment during adolescence, but not during adulthood, tLTP was increased. Short-and long-term adaptation of mPFC synaptic plasticity after adolescent nicotine exposure could be explained by changed mGluR2 signaling. Blocking mGluR2s augmented tLTP, whereas activating mGluR2s reduced tLTP. Our findings suggest neuronal mechanisms by which exposure to nicotine during adolescence alters the rules for spike timing-dependent plasticity in prefrontal networks that may explain the observed deficits in cognitive performance in later life.
PMCID: PMC3552309  PMID: 22855798
5.  Nicotine exposure during adolescence alters the rules for prefrontal cortical synaptic plasticity during adulthood 
The majority of adolescents report to have smoked a cigarette at least once. Adolescence is a critical period of brain development during which maturation of areas involved in cognitive functioning, such as the medial prefrontal cortex (mPFC), is still ongoing. Tobacco smoking during this age may compromise the normal course of prefrontal development and lead to cognitive impairments in later life. In addition, adolescent smokers suffer from attention deficits, which progress with the years of smoking. Recent studies in rodents reveal the molecular changes induced by adolescent nicotine exposure that alter the functioning of synapses in the PFC and underlie the lasting effects on cognitive function. In particular, the expression and function of metabotropic glutamate receptors (mGluRs) are changed and this has an impact on short- and long-term plasticity of glutamatergic synapses in the PFC and ultimately on the attention performance. Here, we review and discuss these recent findings.
PMCID: PMC3410598  PMID: 22876231
adolescence; nicotine; prefrontal cortex; STDP; mGluR; nAChR; cognitive behavior
6.  Presynaptic Ionotropic Receptors Controlling and Modulating the Rules for Spike Timing-Dependent Plasticity 
Neural Plasticity  2011;2011:870763.
Throughout life, activity-dependent changes in neuronal connection strength enable the brain to refine neural circuits and learn based on experience. In line with predictions made by Hebb, synapse strength can be modified depending on the millisecond timing of action potential firing (STDP). The sign of synaptic plasticity depends on the spike order of presynaptic and postsynaptic neurons. Ionotropic neurotransmitter receptors, such as NMDA receptors and nicotinic acetylcholine receptors, are intimately involved in setting the rules for synaptic strengthening and weakening. In addition, timing rules for STDP within synapses are not fixed. They can be altered by activation of ionotropic receptors located at, or close to, synapses. Here, we will highlight studies that uncovered how network actions control and modulate timing rules for STDP by activating presynaptic ionotropic receptors. Furthermore, we will discuss how interaction between different types of ionotropic receptors may create “timing” windows during which particular timing rules lead to synaptic changes.
PMCID: PMC3173883  PMID: 21941664
7.  GABAergic Synapse Properties May Explain Genetic Variation in Hippocampal Network Oscillations in Mice 
Cognitive ability and the properties of brain oscillation are highly heritable in humans. Genetic variation underlying oscillatory activity might give rise to differences in cognition and behavior. How genetic diversity translates into altered properties of oscillations and synchronization of neuronal activity is unknown. To address this issue, we investigated cellular and synaptic mechanisms of hippocampal fast network oscillations in eight genetically distinct inbred mouse strains. The frequency of carbachol-induced oscillations differed substantially between mouse strains. Since GABAergic inhibition sets oscillation frequency, we studied the properties of inhibitory synaptic inputs (IPSCs) received by CA3 and CA1 pyramidal cells of three mouse strains that showed the highest, lowest and intermediate frequencies of oscillations. In CA3 pyramidal cells, the frequency of rhythmic IPSC input showed the same strain differences as the frequency of field oscillations. Furthermore, IPSC decay times in both CA1 and CA3 pyramidal cells were faster in mouse strains with higher oscillation frequencies than in mouse strains with lower oscillation frequency, suggesting that differences in GABAA-receptor subunit composition exist between these strains. Indeed, gene expression of GABAA-receptor β2 (Gabrb2) and β3 (Gabrb2) subunits was higher in mouse strains with faster decay kinetics compared with mouse strains with slower decay kinetics. Hippocampal pyramidal neurons in mouse strains with higher oscillation frequencies and faster decay kinetics fired action potential at higher frequencies. These data indicate that differences in genetic background may result in different GABAA-receptor subunit expression, which affects the rhythm of pyramidal neuron firing and fast network activity through GABA synapse kinetics.
PMCID: PMC2901093  PMID: 21082021
fast network oscillations; GABA synapses; heritability; hippocampus; GABA receptor subunits; C57; Balbc; NOD
8.  Human Synapses Show a Wide Temporal Window for Spike-Timing-Dependent Plasticity 
Throughout our lifetime, activity-dependent changes in neuronal connection strength enable the brain to refine neural circuits and learn based on experience. Synapses can bi-directionally alter strength and the magnitude and sign depend on the millisecond timing of presynaptic and postsynaptic action potential firing. Recent findings on laboratory animals have shown that neurons can show a variety of temporal windows for spike-timing-dependent plasticity (STDP). It is unknown what synaptic learning rules exist in human synapses and whether similar temporal windows for STDP at synapses hold true for the human brain. Here, we directly tested in human slices cut from hippocampal tissue removed for surgical treatment of deeper brain structures in drug-resistant epilepsy patients, whether adult human synapses can change strength in response to millisecond timing of pre- and postsynaptic firing. We find that adult human hippocampal synapses can alter synapse strength in response to timed pre- and postsynaptic activity. In contrast to rodent hippocampal synapses, the sign of plasticity does not sharply switch around 0-ms timing. Instead, both positive timing intervals, in which presynaptic firing preceded the postsynaptic action potential, and negative timing intervals, in which postsynaptic firing preceded presynaptic activity down to −80 ms, increase synapse strength (tLTP). Negative timing intervals between −80 to −130 ms induce a lasting reduction of synapse strength (tLTD). Thus, similar to rodent synapses, adult human synapses can show spike-timing-dependent changes in strength. The timing rules of STDP in human hippocampus, however, seem to differ from rodent hippocampus, and suggest a less strict interpretation of Hebb's predictions.
PMCID: PMC3059666  PMID: 21423498
human; synapse; hippocampus; neocortex; synaptic plasticity; spike-timing-dependent plasticity; Hebbian plasticity
9.  Short- and Long-Term Consequences of Nicotine Exposure during Adolescence for Prefrontal Cortex Neuronal Network Function 
More than 70% of adolescents report to have smoked a cigarette at least once. At the adolescent stage the brain has not completed its maturation. The prefrontal cortex (PFC), the brain area responsible for executive functions and attention performance, is one of the last brain areas to mature and is still developing during adolescence. Smoking during adolescence increases the risk of developing psychiatric disorders and cognitive impairment in later life. In addition, adolescent smokers suffer from attention deficits, which aggravate with the years of smoking. Recent studies in rodents reveal the molecular changes induced by adolescent nicotine exposure that alter the functioning of synapses in the PFC and that underlie the lasting effects on cognitive function. Here we provide an overview of these recent findings.
Nicotine exposure during adolescence alters acetylcholine and glutamate receptor signaling in the prefrontal cortex, one of the last brain areas to mature. This may help explain altered cognitive function and attention performance in adolescents who smoke.
PMCID: PMC3543069  PMID: 22983224
10.  High Bandwidth Synaptic Communication and Frequency Tracking in Human Neocortex 
PLoS Biology  2014;12(11):e1002007.
Because of fast recovery from synaptic depression and fast-initiated action potentials, neuronal information transfer can have a substantially higher bandwidth in human neocortical circuits than in those of rodents.
Neuronal firing, synaptic transmission, and its plasticity form the building blocks for processing and storage of information in the brain. It is unknown whether adult human synapses are more efficient in transferring information between neurons than rodent synapses. To test this, we recorded from connected pairs of pyramidal neurons in acute brain slices of adult human and mouse temporal cortex and probed the dynamical properties of use-dependent plasticity. We found that human synaptic connections were purely depressing and that they recovered three to four times more swiftly from depression than synapses in rodent neocortex. Thereby, during realistic spike trains, the temporal resolution of synaptic information exchange in human synapses substantially surpasses that in mice. Using information theory, we calculate that information transfer between human pyramidal neurons exceeds that of mouse pyramidal neurons by four to nine times, well into the beta and gamma frequency range. In addition, we found that human principal cells tracked fine temporal features, conveyed in received synaptic inputs, at a wider bandwidth than for rodents. Action potential firing probability was reliably phase-locked to input transients up to 1,000 cycles/s because of a steep onset of action potentials in human pyramidal neurons during spike trains, unlike in rodent neurons. Our data show that, in contrast to the widely held views of limited information transfer in rodent depressing synapses, fast recovering synapses of human neurons can actually transfer substantial amounts of information during spike trains. In addition, human pyramidal neurons are equipped to encode high synaptic information content. Thus, adult human cortical microcircuits relay information at a wider bandwidth than rodent microcircuits.
Author Summary
Our ability to think, memorize information, and act appropriately depends on circuits of connected neurons in the brain. In these circuits, neurons pass information to each other using electric pulses (action potentials) that cause the release of chemical neurotransmitters, which alter the membrane electric potential of receiving neurons. Based on the inputs neurons receive, they decide whether to transmit action potentials to other neurons in the circuit to pass on information. During sequences of repeated information transfer, synaptic connections between two neurons temporarily become weaker by synaptic depression. Our knowledge of neuronal information transfer is based on rodent neurons. The properties of synaptic information transfer and synaptic depression in humans are not known. Here, we show that adult human neurons can transfer information with up to ten times higher rates than mouse neurons, because of a three to four times faster recovery from depression. Furthermore, we found that human neurons can respond faster to synaptic inputs, owing to faster initiation of action potentials. Human neurons can thereby reliably encode high input frequencies in their output. Thus, neuronal information transfer can have a substantially higher bandwidth in human neocortical circuits than in rodent brains.
PMCID: PMC4244038  PMID: 25422947
11.  Inter-Network Interactions: Impact of Connections between Oscillatory Neuronal Networks on Oscillation Frequency and Pattern 
PLoS ONE  2014;9(7):e100899.
Oscillations in electrical activity are a characteristic feature of many brain networks and display a wide variety of temporal patterns. A network may express a single oscillation frequency, alternate between two or more distinct frequencies, or continually express multiple frequencies. In addition, oscillation amplitude may fluctuate over time. The origin of this complex repertoire of activity remains unclear. Different cortical layers often produce distinct oscillation frequencies. To investigate whether interactions between different networks could contribute to the variety of oscillation patterns, we created two model networks, one generating on its own a relatively slow frequency (20 Hz; slow network) and one generating a fast frequency (32 Hz; fast network). Taking either the slow or the fast network as source network projecting connections to the other, or target, network, we systematically investigated how type and strength of inter-network connections affected target network activity. For high inter-network connection strengths, we found that the slow network was more effective at completely imposing its rhythm on the fast network than the other way around. The strongest entrainment occurred when excitatory cells of the slow network projected to excitatory or inhibitory cells of the fast network. The fast network most strongly imposed its rhythm on the slow network when its excitatory cells projected to excitatory cells of the slow network. Interestingly, for lower inter-network connection strengths, multiple frequencies coexisted in the target network. Just as observed in rat prefrontal cortex, the target network could express multiple frequencies at the same time, alternate between two distinct oscillation frequencies, or express a single frequency with alternating episodes of high and low amplitude. Together, our results suggest that input from other oscillating networks may markedly alter a network's frequency spectrum and may partly be responsible for the rich repertoire of temporal oscillation patterns observed in the brain.
PMCID: PMC4090128  PMID: 25007325
12.  Reducing hippocampal extracellular matrix reverses early memory deficits in a mouse model of Alzheimer’s disease 
Alzheimer’s disease is caused by increased production or reduced clearance of amyloid-β, which results in the formation amyloid-β plaques and triggers a cascade of downstream events leading to progressive neurodegeneration. The earliest clinical symptoms of Alzheimer’s disease, i.e., memory loss, are however poorly understood from a molecular and cellular perspective. Here we used APPswe/PS1dE9 (APP/PS1) transgenic mice to study the early pre-pathological effects of increased amyloid-β levels on hippocampal synaptic plasticity and memory. Using an unbiased proteomics approach we show that the early increase in amyloid-β levels in APP/PS1 mice at three months of age coincides with a robust and significant upregulation of several protein components of the extracellular matrix in hippocampal synaptosome preparations. This increase in extracellular matrix levels occurred well before the onset of plaque formation and was paralleled by impairments in hippocampal long-term potentiation and contextual memory. Direct injection into the hippocampus of the extracellular matrix inactivating enzyme chondroitinase ABC restored both long-term potentiation and contextual memory performance. These findings indicate an important role for the extracellular matrix in causing early memory loss in Alzheimer’s disease.
Electronic supplementary material
The online version of this article (doi:10.1186/s40478-014-0076-z) contains supplementary material, which is available to authorized users.
PMCID: PMC4149201  PMID: 24974208
Alzheimer’s disease; Hippocampus; Memory; Plasticity; Extracellular matrix; Perineuronal net
13.  Ventromedial Prefrontal Cortex Pyramidal Cells Have a Temporal Dynamic Role in Recall and Extinction of Cocaine-Associated Memory 
The Journal of Neuroscience  2013;33(46):18225-18233.
In addicts, associative memories related to the rewarding effects of drugs of abuse can evoke powerful craving and drug seeking urges, but effective treatment to suppress these memories is not available. Detailed insight into the neural circuitry that mediates expression of drug-associated memory is therefore of crucial importance. Substantial evidence from rodent models of addictive behavior points to the involvement of the ventromedial prefrontal cortex (vmPFC) in conditioned drug seeking, but specific knowledge of the temporal role of vmPFC pyramidal cells is lacking. To this end, we used an optogenetics approach to probe the involvement of vmPFC pyramidal cells in expression of a recent and remote conditioned cocaine memory. In mice, we expressed Channelrhodopsin-2 (ChR2) or Halorhodopsin (eNpHR3.0) in pyramidal cells of the vmPFC and studied the effect of activation or inhibition of these cells during expression of a cocaine-contextual memory on days 1–2 (recent) and ∼3 weeks (remote) after conditioning. Whereas optical activation of pyramidal cells facilitated extinction of remote memory, without affecting recent memory, inhibition of pyramidal cells acutely impaired recall of recent cocaine memory, without affecting recall of remote memory. In addition, we found that silencing pyramidal cells blocked extinction learning at the remote memory time-point. We provide causal evidence of a critical time-dependent switch in the contribution of vmPFC pyramidal cells to recall and extinction of cocaine-associated memory, indicating that the circuitry that controls expression of cocaine memories reorganizes over time.
PMCID: PMC3828471  PMID: 24227731
14.  Optimal lens design and use in laser-scanning microscopy 
Biomedical Optics Express  2014;5(5):1588-1609.
In laser-scanning microscopy often an off-the-shelf achromatic doublet is used as a scan lens which can reduce the available diffraction-limited field-of-view (FOV) by a factor of 3 and introduce chromatic aberrations that are scan angle dependent. Here we present several simple lens designs of superior quality that fully make use of high-NA low-magnification objectives, offering diffraction-limited imaging over a large FOV and wavelength range. We constructed a two-photon laser-scanning microscope with optimized custom lenses which had a near diffraction limit point-spread-function (PSF) with less than 3.6% variation over a 400 µm FOV and less than 0.5 µm lateral color between 750 and 1050 nm.
PMCID: PMC4026907  PMID: 24877017
(180.0180) Microscopy; (180.1790) Confocal microscopy; (180.4315) Nonlinear microscopy; (220.3620) Lens system design; (220.3630) Lenses
15.  The ARSQ 2.0 reveals age and personality effects on mind-wandering experiences 
The human brain frequently generates thoughts and feelings detached from environmental demands. Investigating the rich repertoire of these mind-wandering experiences is challenging, as it depends on introspection and mapping its content requires an unknown number of dimensions. We recently developed a retrospective self-report questionnaire—the Amsterdam Resting-State Questionnaire (ARSQ)—which quantifies mind wandering along seven dimensions: “Discontinuity of Mind,” “Theory of Mind,” “Self,” “Planning,” “Sleepiness,” “Comfort,” and “Somatic Awareness.” Here, we show using confirmatory factor analysis that the ARSQ can be simplified by standardizing the number of items per factor and extending it to a 10-dimensional model, adding “Health Concern,” “Visual Thought,” and “Verbal Thought.” We will refer to this extended ARSQ as the “ARSQ 2.0.” Testing for effects of age and gender revealed no main effect for gender, yet a moderate and significant negative effect for age on the dimensions of “Self,” “Planning,” and “Visual Thought.” Interestingly, we observed stable and significant test-retest correlations across measurement intervals of 3–32 months except for “Sleepiness” and “Health Concern.” To investigate whether this stability could be related to personality traits, we correlated ARSQ scores to proxy measures of Cloninger's Temperament and Character Inventory, revealing multiple significant associations for the trait “Self-Directedness.” Other traits correlated to specific ARSQ dimensions, e.g., a negative association between “Harm Avoidance” and “Comfort.” Together, our results suggest that the ARSQ 2.0 is a promising instrument for quantitative studies on mind wandering and its relation to other psychological or physiological phenomena.
PMCID: PMC3982068  PMID: 24772097
Amsterdam Resting-State Questionnaire (ARSQ); consciousness; mind wandering; personality traits; test-retest reliability
16.  Competitive Dynamics during Resource-Driven Neurite Outgrowth 
PLoS ONE  2014;9(2):e86741.
Neurons form networks by growing out neurites that synaptically connect to other neurons. During this process, neurites develop complex branched trees. Interestingly, the outgrowth of neurite branches is often accompanied by the simultaneous withdrawal of other branches belonging to the same tree. This apparent competitive outgrowth between branches of the same neuron is relevant for the formation of synaptic connectivity, but the underlying mechanisms are unknown. An essential component of neurites is the cytoskeleton of microtubules, long polymers of tubulin dimers running throughout the entire neurite. To investigate whether competition between neurites can emerge from the dynamics of a resource such as tubulin, we developed a multi-compartmental model of neurite growth. In the model, tubulin is produced in the soma and transported by diffusion and active transport to the growth cones at the tip of the neurites, where it is assembled into microtubules to elongate the neurite. Just as in experimental studies, we find that the outgrowth of a neurite branch can lead to the simultaneous retraction of its neighboring branches. We show that these competitive interactions occur in simple neurite morphologies as well as in complex neurite arborizations and that in developing neurons competition for a growth resource such as tubulin can account for the differential outgrowth of neurite branches. The model predicts that competition between neurite branches decreases with path distance between growth cones, increases with path distance from growth cone to soma, and decreases with a higher rate of active transport. Together, our results suggest that competition between outgrowing neurites can already emerge from relatively simple and basic dynamics of a growth resource. Our findings point to the need to test the model predictions and to determine, by monitoring tubulin concentrations in outgrowing neurons, whether tubulin is the resource for which neurites compete.
PMCID: PMC3911915  PMID: 24498280
17.  C-Terminal Interactors of the AMPA Receptor Auxiliary Subunit Shisa9 
PLoS ONE  2014;9(2):e87360.
Shisa9 (initially named CKAMP44) has been identified as auxiliary subunit of the AMPA-type glutamate receptors and was shown to modulate its physiological properties. Shisa9 is a type-I transmembrane protein and contains a C-terminal PDZ domain that potentially interacts with cytosolic proteins. In this study, we performed a yeast two-hybrid screening that yielded eight PDZ domain-containing interactors of Shisa9, which were independently validated. The identified interactors are known scaffolding proteins residing in the neuronal postsynaptic density. To test whether C-terminal scaffolding interactions of Shisa9 affect synaptic AMPA receptor function in the hippocampus, we disrupted these interactions using a Shisa9 C-terminal mimetic peptide. In the absence of scaffolding interactions of Shisa9, glutamatergic AMPA receptor-mediated synaptic currents in the lateral perforant path of the mouse hippocampus had a faster decay time, and paired-pulse facilitation was reduced. Furthermore, disruption of the PDZ interactions between Shisa9 and its binding partners affected hippocampal network activity. Taken together, our data identifies novel interaction partners of Shisa9, and shows that the C-terminal interactions of Shisa9 through its PDZ domain interaction motif are important for AMPA receptor synaptic and network functions.
PMCID: PMC3911953  PMID: 24498314
18.  Independently Outgrowing Neurons and Geometry-Based Synapse Formation Produce Networks with Realistic Synaptic Connectivity 
PLoS ONE  2014;9(1):e85858.
Neuronal signal integration and information processing in cortical networks critically depend on the organization of synaptic connectivity. During development, neurons can form synaptic connections when their axonal and dendritic arborizations come within close proximity of each other. Although many signaling cues are thought to be involved in guiding neuronal extensions, the extent to which accidental appositions between axons and dendrites can already account for synaptic connectivity remains unclear. To investigate this, we generated a local network of cortical L2/3 neurons that grew out independently of each other and that were not guided by any extracellular cues. Synapses were formed when axonal and dendritic branches came by chance within a threshold distance of each other. Despite the absence of guidance cues, we found that the emerging synaptic connectivity showed a good agreement with available experimental data on spatial locations of synapses on dendrites and axons, number of synapses by which neurons are connected, connection probability between neurons, distance between connected neurons, and pattern of synaptic connectivity. The connectivity pattern had a small-world topology but was not scale free. Together, our results suggest that baseline synaptic connectivity in local cortical circuits may largely result from accidentally overlapping axonal and dendritic branches of independently outgrowing neurons.
PMCID: PMC3894200  PMID: 24454938
19.  Preliteracy signatures of poor-reading abilities in resting-state EEG 
The hereditary character of dyslexia suggests the presence of putative underlying neural anomalies already in preliterate age. Here, we investigated whether early neurophysiological correlates of future reading difficulties—a hallmark of dyslexia—could be identified in the resting-state EEG of preliterate children. The children in this study were recruited at birth and classified on the basis of parents' performance on reading tests to be at-risk of becoming poor readers (n = 48) or not (n = 14). Eyes-open rest EEG was measured at the age of 3 years, and the at-risk children were divided into fluent readers (n = 24) and non-fluent readers (n = 24) after reading assessment at their third grade of school. We found that fluent readers and non-fluent readers differed in normalized spectral amplitude. Non-fluent readers were characterized by lower amplitude in the delta-1 frequency band (0.5–2 Hz) and higher amplitude in the alpha-1 band (6–8 Hz) in multiple scalp regions compared to control and at-risk fluent readers. Interestingly, across groups these EEG biomarkers correlated with several behavioral test scores measured in the third grade. Specifically, the performance on reading fluency, phonological and orthographic tasks and rapid automatized naming task correlated positively with delta-1 and negatively with alpha-1. Together, our results suggest that combining family-risk status, neurophysiological testing and behavioral test scores in a longitudinal setting may help uncover physiological mechanisms implicated with neurodevelopmental disorders such as the predisposition to reading disabilities.
PMCID: PMC4168717  PMID: 25285075
precursors of reading disabilities; resting-state EEG; reading fluency; delta and alpha oscillations
20.  α2-containing GABAA receptors expressed in hippocampal region CA3 control fast network oscillations 
The Journal of physiology  2012;591(Pt 4):845-858.
GABAA receptors are critically involved in hippocampal oscillations. GABAA receptor α1 and α2 subunits are differentially expressed throughout the hippocampal circuitry and thereby may have distinct contributions to oscillations. It is unknown which GABAA receptor α subunit controls hippocampal oscillations and where these receptors are expressed. To address these questions we used transgenic mice expressing GABAA receptor α1 and/or α2 subunits with point mutations (H101R) that render these receptors insensitive to allosteric modulation at the benzodiazepine binding site, and tested how increased or decreased function of α subunits affects hippocampal oscillations. Positive allosteric modulation by zolpidem prolonged decay kinetics of hippocampal GABAergic synaptic transmission and reduced the frequency of cholinergically induced oscillations. Allosteric modulation of GABAergic receptors in CA3 altered oscillation frequency in CA1, while modulation of GABA receptors in CA1 did not affect oscillations. In mice having a point mutation (H101R) at the GABAA receptor α2 subunit, zolpidem effects on cholinergically induced oscillations were strongly reduced compared to wild-type animals, while zolpidem modulation was still present in mice with the H101R mutation at the α1 subunit. Furthermore, genetic knockout of α2 subunits strongly reduced oscillations, whereas knockout of α1 subunits had no effect. Allosteric modulation of GABAergic receptors was strongly reduced in unitary connections between fast spiking interneurons and pyramidal neurons in CA3 of α2H101R mice, but not of α1H101R mice, suggesting that fast spiking interneuron to pyramidal neuron synapses in CA3 contain α2 subunits. These findings suggest that α2-containing GABAA receptors expressed in the CA3 region provide the inhibition that controls hippocampal rhythm during cholinergically induced oscillations.
PMCID: PMC3576427  PMID: 23109109
21.  Short- and Long-Term Consequences of Nicotine Exposure during Adolescence for Prefrontal Cortex Neuronal Network Function 
Cold Spring Harbor perspectives in medicine  2012;2(12):10.1101/cshperspect.a012120 a012120.
More than 70% of adolescents report to have smoked a cigarette at least once. At the adolescent stage the brain has not completed its maturation. The prefrontal cortex (PFC), the brain area responsible for executive functions and attention performance, is one of the last brain areas to mature and is still developing during adolescence. Smoking during adolescence increases the risk of developing psychiatric disorders and cognitive impairment in later life. In addition, adolescent smokers suffer from attention deficits, which aggravate with the years of smoking. Recent studies in rodents reveal the molecular changes induced by adolescent nicotine exposure that alter the functioning of synapses in the PFC and that underlie the lasting effects on cognitive function. Here we provide an overview of these recent findings.
PMCID: PMC3543069  PMID: 22983224
22.  Hyperconnectivity and Slow Synapses during Early Development of Medial Prefrontal Cortex in a Mouse Model for Mental Retardation and Autism 
Neuronal theories of neurodevelopmental disorders (NDDs) of autism and mental retardation propose that abnormal connectivity underlies deficits in attentional processing. We tested this theory by studying unitary synaptic connections between layer 5 pyramidal neurons within medial prefrontal cortex (mPFC) networks in the Fmr1-KO mouse model for mental retardation and autism. In line with predictions from neurocognitive theory, we found that neighboring pyramidal neurons were hyperconnected during a critical period in early mPFC development. Surprisingly, excitatory synaptic connections between Fmr1-KO pyramidal neurons were significantly slower and failed to recover from short-term depression as quickly as wild type (WT) synapses. By 4--5 weeks of mPFC development, connectivity rates were identical for both KO and WT pyramidal neurons and synapse dynamics changed from depressing to facilitating responses with similar properties in both groups. We propose that the early alteration in connectivity and synaptic recovery are tightly linked: using a network model, we show that slower synapses are essential to counterbalance hyperconnectivity in order to maintain a dynamic range of excitatory activity. However, the slow synaptic time constants induce decreased responsiveness to low-frequency stimulation, which may explain deficits in integration and early information processing in attentional neuronal networks in NDDs.
PMCID: PMC3561643  PMID: 21856714
autism; EPSC; Fragile X; hyperconnectivity; prefrontal cortex
23.  Adolescent nicotine exposure transiently increases high-affinity nicotinic receptors and modulates inhibitory synaptic transmission in rat medial prefrontal cortex 
Adolescence is a critical developmental period during which most adult smokers initiate their habit. Adolescents are more vulnerable than adults to nicotine’s long-term effects on addictive and cognitive behavior. We investigated whether adolescent nicotine exposure in rats modifies expression of nicotinic acetylcholine receptors (nAChRs) in medial prefrontal cortex (mPFC) in the short and/or long term, and whether this has functional consequences. Using receptor binding studies followed by immunoprecipitation of nAChR subunits, we showed that adolescent nicotine exposure, as compared with saline, caused an increase in mPFC nAChRs containing α4 or β2 subunits (24 and 18%, respectively) 24 h after the last injection. Nicotine exposure in adulthood had no such effect. This increase was transient and was not observed 5 wk following either adolescent or adult nicotine exposure. In line with increased nAChRs expression 1 d after adolescent nicotine exposure, we observed a 34% increase in amplitude of nicotine-induced spontaneous inhibitory postsynaptic currents in layer II/III mPFC pyramidal neurons. These effects were transient and specific, and observed only acutely after adolescent nicotine exposure, but not after 5 wk, and no changes were observed in adult-exposed animals. The acute nicotine-induced increase in α4β2-containing receptors in adolescents interferes with the normal developmental decrease (37%) of these receptors from early adolescence (postnatal day 34) to adulthood (postnatal day 104) in the mPFC. Together, this suggests that these receptors play a role in mediating the acute rewarding effects of nicotine and may underlie the increased sensitivity of adolescents to nicotine.
PMCID: PMC3558741  PMID: 22308197
neurophysiology; membrane expression; immunoprecipitation; epibatidine binding; IPSC amplitude; pyramidal neurons
24.  Critical-State Dynamics of Avalanches and Oscillations Jointly Emerge from Balanced Excitation/Inhibition in Neuronal Networks 
Criticality has gained widespread interest in neuroscience as an attractive framework for understanding the character and functional implications of variability in brain activity. The metastability of critical systems maximizes their dynamic range, storage capacity, and computational power. Power-law scaling—a hallmark of criticality—has been observed on different levels, e.g., in the distribution of neuronal avalanches in vitro and in vivo, but also in the decay of temporal correlations in behavioral performance and ongoing oscillations in humans. An unresolved issue is whether power-law scaling on different organizational levels in the brain—and possibly in other hierarchically organized systems—can be related. Here, we show that critical-state dynamics of avalanches and oscillations jointly emerge in a neuronal network model when excitation and inhibition is balanced. The oscillatory activity of the model was qualitatively similar to what is typically observed in recordings of human resting-state MEG. We propose that homeostatic plasticity mechanisms tune this balance in healthy brain networks, and that it is essential for critical behavior on multiple levels of neuronal organization with ensuing functional benefits. Based on our network model, we introduce a concept of multi-level criticality in which power-law scaling can emerge on multiple time scales in oscillating networks.
PMCID: PMC3553543  PMID: 22815496
25.  Layer-specific high-frequency action potential spiking in the prefrontal cortex of awake rats 
Cortical pyramidal neurons show irregular in vivo action potential (AP) spiking with high-frequency bursts occurring on sparse background activity. Somatic APs can backpropagate from soma into basal and apical dendrites and locally generate dendritic calcium spikes. The critical AP frequency for generation of such dendritic calcium spikes can be very different depending on cell type or brain area involved. Previously, it was shown in vitro that calcium electrogenesis can be induced in L(ayer) 5 pyramidal neurons of prefrontal cortex (PFC). It remains an open question whether somatic burst spiking and the resulting dendritic calcium electrogenesis also occur in morphologically more compact L2/3 pyramidal neurons. Furthermore, it is not known whether critical frequencies that trigger dendritic calcium electrogenesis occur in PFC under awake conditions in vivo. Here, we addressed these issues and found that pyramidal neurons in both PFC L2/3 and L5 in awake rats spike APs in short bursts but with different probabilities. The critical frequency (CF) for calcium electrogenesis in vitro was layer-specific and lower in L5 neurons compared to L2/3. Taking the in vitro CF as a predictive measure for dendritic electrogenesis during in vivo spontaneous activity, supracritical bursts in vivo were observed in a larger fraction of L5 neurons compared to L2/3 neurons but with similar incidence within these subpopulations. Together, these results show that in PFC of awake rats, AP spiking occurs at frequencies that are relevant for dendritic calcium electrogenesis and suggest that in awake rat PFC, dendritic calcium electrogenesis may be involved in neuronal computation.
PMCID: PMC3693071  PMID: 23805075
calcium electrogenesis; prefrontal cortex; action potential; high-frequency bursts; dendrites; backpropagation; in vivo; awake rats

Results 1-25 (42)