PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (41)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
more »
Document Types
1.  RNA Sequence Reveals Mouse Retinal Transcriptome Changes Early after Axonal Injury 
PLoS ONE  2014;9(3):e93258.
Glaucoma is an ocular disease characterized by progressive retinal ganglion cell (RGC) death caused by axonal injury. However, the underlying mechanisms involved in RGC death remain unclear. In this study, we investigated changes in the transcriptome profile following axonal injury in mice (C57BL/6) with RNA sequencing (RNA-seq) technology. The experiment group underwent an optic nerve crush (ONC) procedure to induce axonal injury in the right eye, and the control group underwent a sham procedure. Two days later, we extracted the retinas and performed RNA-seq and a pathway analysis. We identified 177 differentially expressed genes with RNA-seq, notably the endoplasmic reticulum (ER) stress-related genes Atf3, Atf4, Atf5, Chac1, Chop, Egr1 and Trb3, which were significantly upregulated. The pathway analysis revealed that ATF4 was the most significant upstream regulator. The antioxidative response-related genes Hmox1 and Srxn1, as well as the immune response-related genes C1qa, C1qb and C1qc, were also significantly upregulated. To our knowledge, this is the first reported RNA-seq investigation of the retinal transcriptome and molecular pathways in the early stages after axonal injury. Our results indicated that ER stress plays a key role under these conditions. Furthermore, the antioxidative defense and immune responses occurred concurrently in the early stages after axonal injury. We believe that our study will lead to a better understanding of and insight into the molecular mechanisms underlying RGC death after axonal injury.
doi:10.1371/journal.pone.0093258
PMCID: PMC3968129  PMID: 24676137
2.  Chronic Restraint Stress Upregulates Erythropoiesis through Glucocorticoid Stimulation 
PLoS ONE  2013;8(10):e77935.
In response to elevated glucocorticoid levels, erythroid progenitors rapidly expand to produce large numbers of young erythrocytes. Previous work demonstrates hematopoietic changes in rodents exposed to various physical and psychological stressors, however, the effects of chronic psychological stress on erythropoiesis has not be delineated. We employed laboratory, clinical and genomic analyses of a murine model of chronic restraint stress (RST) to examine the influence of psychological stress on erythropoiesis. Mice exposed to RST demonstrated markers of early erythroid expansion involving the glucocorticoid receptor. In addition, these RST-exposed mice had increased numbers of circulating reticulocytes and increased erythropoiesis in primary and secondary erythroid tissues. Mice also showed increases in erythroid progenitor populations and elevated expression of the erythroid transcription factor KLF1 in these cells. Together this work reports some of the first evidence of psychological stress affecting erythroid homeostasis through glucocorticoid stimulation.
doi:10.1371/journal.pone.0077935
PMCID: PMC3799740  PMID: 24205034
3.  The Relationship between Visual Field Index and Estimated Number of Retinal Ganglion Cells in Glaucoma 
PLoS ONE  2013;8(10):e76590.
Purpose
To evaluate the relationship between visual field index (VFI) and the estimated number of retinal ganglion cells (RGCs) in glaucoma.
Methods
A multicenter study of 1,245 healthy, glaucomatous and suspected glaucomatous eyes of 1,245 subjects recruited from the Diagnostic Innovations in Glaucoma Study (DIGS) and African Descent and Glaucoma Evaluation Study (ADAGES). All eyes underwent standard automated perimetry (SAP) and time-domain optical coherence tomography (TD-OCT). Estimates of RGC count and percentage of RGCs remaining, compared to age-matched healthy eyes, were calculated from TD-OCT using a previously described formula. Smoothing spline curves were fitted to examine the relationship between VFI and the percent remaining RGCs. The first derivative (i.e., slopes) of these curves was used to explore the relationship between changes in these measures.
Results
The relationships between the VFI and both estimated RGC counts and the percent remaining RGCs were nonlinear. A unit number of VFI loss corresponded to substantially greater loss of estimated RGCs and estimated percentage of RGCs remaining in early compared to late disease.
Conclusions
The relationship between VFI and estimated RGC counts is nonlinear and the index substantially underestimates the amount of neural loss early in the disease. Disease severity should be taken into account when interpreting rates of VFI change over time.
doi:10.1371/journal.pone.0076590
PMCID: PMC3797798  PMID: 24146895
4.  Autophagy in Retinal Ganglion Cells in a Rhesus Monkey Chronic Hypertensive Glaucoma Model  
PLoS ONE  2013;8(10):e77100.
Primary open angle glaucoma (POAG) is a neurodegenerative disease characterized by physiological intraocular hypertension that causes damage to the retinal ganglion cells (RGCs). In the past, RGC damage in POAG was suggested to have been attributed to RGC apoptosis. However, in the present study, we applied a model closer to human POAG through the use of a chronic hypertensive glaucoma model in rhesus monkeys to investigate whether another mode of progressive cell death, autophagy, was activated in the glaucomatous retinas. First, in the glaucomatous retinas, the levels of LC3B-II, LC3B-II/LC3B-I and Beclin 1 increased as demonstrated by Western blot analyses, whereas early or initial autophagic vacuoles (AVi) and late or degraded autophagic vacuoles (AVd) accumulated in the ganglion cell layer (GCL) and in the inner plexiform layer (IPL) as determined by transmission electron microscopy (TEM) analysis. Second, lysosome activity and autophagosome-lysosomal fusion increased in the RGCs of the glaucomatous retinas, as demonstrated by Western blotting against lysosome associated membrane protein-1 (LAMP1) and double labeling against LC3B and LAMP1. Third, apoptosis was activated in the glaucomatous eyes with increased levels of caspase-3 and cleaved caspase-3 and an increased number of TUNEL-positive RGCs. Our results suggested that autophagy was activated in RGCs in the chronic hypertensive glaucoma model of rhesus monkeys and that autophagy may have potential as a new target for intervention in glaucoma treatment.
doi:10.1371/journal.pone.0077100
PMCID: PMC3797129  PMID: 24143204
5.  Chitosan Oligosaccharides Attenuates Oxidative-Stress Related Retinal Degeneration in Rats 
PLoS ONE  2013;8(10):e77323.
This study investigated the therapeutic potential and mechanisms of chitosan oligosaccharides (COS) for oxidative stress-induced retinal diseases. Retinal oxidative damage was induced in Sprague-Dawley rats by intravitreal injection of paraquat (PQ). Low-dose (5 mg/kg) or high-dose (10 mg/kg) COS or PBS was intragastrically given for 14 days after PQ injection. Electroretinograms were performed to determine the functionality of the retinas. The surviving neurons in the retinal ganglion cell layer and retinal apoptosis were determined by counting Neu N-positive cells in whole-mounted retinas and TUNEL staining, respectively. The generation of reactive oxygen species (ROS) was determined by lucigenin- and luminol-enhanced chemiluminescence. Retinal oxidative damages were assessed by staining with nitrotyrosine, acrolein, and 8-hydroxy-2'-deoxyguanosine (8-OHdG). Immunohistochemical studies were used to demonstrate the expression of nuclear factor-kappa B (NF-κB) p65 in retinas. An in vitro study using RGC-5 cells was performed to verify the results. We demonstrated COS significantly enhanced the recovery of retinal function, preserved inner retinal thickness, and decreased retinal neurons loss in a dose-dependent manner. COS administration demonstrated anti-oxidative effects by reducing luminol- and lucigenin-dependent chemiluminenscense levels and activating superoxide dismutase and catalase, leading to decreased retinal apoptosis. COS markedly reduced retinal NF-κB p65. An in vitro study demonstrated COS increased IκB expression, attenuated the increase of p65 and thus decreased NF-κB/DNA binding activity in PQ-stimulated RGC-5 cells. In conclusion, COS attenuates oxidative stress-induced retinal damages, probably by decreasing free radicals, maintaining the activities of anti-oxidative enzymes, and inhibiting the activation of NF-κB.
doi:10.1371/journal.pone.0077323
PMCID: PMC3796472  PMID: 24155943
6.  Genome-Wide Association Study Identifies a Novel Canine Glaucoma Locus 
PLoS ONE  2013;8(8):e70903.
Glaucoma is an optic neuropathy and one of the leading causes of blindness. Its hereditary forms are classified into primary closed-angle (PCAG), primary open-angle (POAG) and primary congenital glaucoma (PCG). Although many loci have been mapped in human, only a few genes have been identified that are associated with the development of glaucoma and the genetic basis of the disease remains poorly understood. Glaucoma has also been described in many dog breeds, including Dandie Dinmont Terriers (DDT) in which it is a late-onset (>7 years) disease. We designed clinical and genetic studies to better define the clinical features of glaucoma in the DDT and to identify the genetic cause. Clinical diagnosis was based on ophthalmic examinations of the affected dogs and 18 additionally investigated unaffected DDTs. We collected DNA from over 400 DTTs and a genome wide association study was performed in a cohort of 23 affected and 23 controls, followed by a fine mapping, a replication study and candidate gene sequencing. The clinical study suggested that ocular abnormalities including abnormal iridocorneal angles and pectinate ligament dysplasia are common (50% and 72%, respectively) in the breed and the disease resembles human PCAG. The genetic study identified a novel 9.5 Mb locus on canine chromosome 8 including the 1.6 Mb best associated region (p = 1.63×10−10, OR = 32 for homozygosity). Mutation screening in five candidate genes did not reveal any causative variants. This study indicates that although ocular abnormalities are common in DDTs, the genetic risk for glaucoma is conferred by a novel locus on CFA8. The canine locus shares synteny to a region in human chromosome 14q, which harbors several loci associated with POAG and PCG. Our study reveals a new locus for canine glaucoma and ongoing molecular studies will likely help to understand the genetic etiology of the disease.
doi:10.1371/journal.pone.0070903
PMCID: PMC3737263  PMID: 23951034
7.  BCL2L1 (BCL-x) promotes survival of adult and developing retinal ganglion cells 
The Bcl-2 family is responsible for regulating cell death pathways in neurons during development, after injury and in disease. The activation of the pro-death family member BAX is often the final step before cell death in neurons. Pro-survival family members such as BCL-X (BCL2L1) act to inhibit BAX activation. Overexpression studies have suggested that BCL-X could play an important physiological role in mediating neuronal viability. Loss-of-function studies performed in vivo have implicated BCL-X as a mediator of neuronal survival during the early stages of neurodevelopment. To assess whether BCL-X is needed to promote the survival of neurons in the central nervous system throughout life, Bcl-x was conditionally removed from the optic cup or throughout the adult mouse. During development BCL-X was required for the survival of differentiating retinal ganglion cells (RGCs) leading up to their normal window of developmental death. Despite its expression in adult RGCs, BCL-X was not required for maintaining RGC viability in adult retinas. However, the loss of BCL-X in adult RGCs did significantly increase the rate of death of RGCs after axonal injury. Thus, in developing and injured RGCs there appears to be an active cell survival program preventing neuronal death.
doi:10.1016/j.mcn.2012.07.006
PMCID: PMC3436941  PMID: 22836101
8.  Relationship between the Magnitude of Intraocular Pressure during an Episode of Acute Elevation and Retinal Damage Four Weeks later in Rats 
PLoS ONE  2013;8(7):e70513.
Purpose
To determine relationship between the magnitude of intraocular pressure (IOP) during a fixed-duration episode of acute elevation and the loss of retinal function and structure 4 weeks later in rats.
Methods
Unilateral elevation of IOP (105 minutes) was achieved manometrically in adult Brown Norway rats (9 groups; n = 4 to 8 each, 10–100 mm Hg and sham control). Full-field ERGs were recorded simultaneously from treated and control eyes 4 weeks after IOP elevation. Scotopic ERG stimuli were white flashes (−6.04 to 2.72 log cd.s.m−2). Photopic ERGs were recorded (1.22 to 2.72 log cd.s.m−2) after 15 min of light adaptation (150 cd/m2). Relative amplitude (treated/control, %) of ERG components versus IOP was described with a cummulative normal function. Retinal ganglion cell (RGC) layer density was determined post mortem by histology.
Results
All ERG components failed to recover completely normal amplitudes by 4 weeks after the insult if IOP was 70 mmHg or greater during the episode. There was no ERG recovery at all if IOP was 100 mmHg. Outer retinal (photoreceptor) function demonstrated the least sensitivity to prior acute IOP elevation. ERG components reflecting inner retinal function were correlated with post mortem RGC layer density.
Conclusions
Retinal function recovers after IOP normalization, such that it requires a level of acute IOP elevation approximately 10 mmHg higher to cause a pattern of permanent dysfunction similar to that observed during the acute event. There is a ‘threshold’ for permanent retinal functional loss in the rat at an IOP between 60 and 70 mmHg if sustained for 105 minutes or more.
doi:10.1371/journal.pone.0070513
PMCID: PMC3726657  PMID: 23922999
9.  Cathepsin B Is Up-Regulated and Mediates Extracellular Matrix Degradation in Trabecular Meshwork Cells Following Phagocytic Challenge 
PLoS ONE  2013;8(7):e68668.
Cells in the trabecular meshwork (TM), a tissue responsible for draining aqueous humor out of the eye, are known to be highly phagocytic. Phagocytic activity in TM cells is thought to play an important role in outflow pathway physiology. However, the molecular mechanisms triggered by phagocytosis in TM cells are unknown. Here we investigated the effects of chronic phagocytic stress on lysosomal function using different phagocytic ligands (E. coli, carboxylated beads, collagen I-coated beads, and pigment). Lysotracker red co-localization and electron micrographs showed the maturation of E. coli- and collagen I-coated beads-containing phagosomes into phagolysosomes. Maturation of phagosomes into phagolysosomes was not observed with carboxylated beads or pigment particles. In addition, phagocytosis of E. coli and collagen I-coated beads led to increased lysosomal mass, and the specific up-regulation and activity of cathepsin B (CTSB). Higher levels of membrane-bound and secreted CTSB were also detected. Moreover, in vivo zymography showed the intralysosomal degradation of ECM components associated with active CTSB, as well as an overall increased gelatinolytic activity in phagocytically challenged TM cells. This increased gelatinolytic activity with phagocytosis was partially blocked with an intracellular CTSB inhibitor. Altogether, these results suggest a potential role of phagocytosis in outflow pathway tissue homeostasis through the up-regulation and/or proteolytic activation of extracellular matrix remodeling genes.
doi:10.1371/journal.pone.0068668
PMCID: PMC3700899  PMID: 23844232
10.  JNK2 and JNK3 are major regulators of axonal injury-induced retinal ganglion cell death 
Neurobiology of Disease  2012;46(2):393-401.
Glaucoma is a neurodegenerative disease characterized by the apoptotic death of retinal ganglion cells (RGCs). The primary insult to RGCs in glaucoma is thought to occur to their axons as they exit the eye in the optic nerve head. However, pathological signaling pathways that exert central roles in triggering RGC death following axonal injury remain unidentified. It is likely that the first changes to occur following axonal injury are signal relay events that transduce the injury signal from the axon to the cell body. Here we focus on the c-Jun N-terminal kinase (JNK1-3) family, a signaling pathway implicated in axonal injury signaling and neurodegenerative apoptosis, and likely to function as a central node in axonal injury-induced RGC death. We show that JNK signaling is activated immediately after axonal injury in RGC axons at the site of injury. Following its early activation, sustained JNK signaling is observed in axonally-injured RGCs in the form of JUN phosphorylation and upregulation. Using mice lacking specific Jnk isoforms, we show that Jnk2 and Jnk3 are the isoforms activated in injured axons. Combined deficiency of Jnk2 and Jnk3 provides robust long-term protection against axonal injury-induced RGC death and prevents downregulation of the RGC marker, BRN3B, and phosphorylation of JUN. Finally, using Jun deficient mice, we show that JUN-dependent pathways are important for axonal injury-induced RGC death. Together these data demonstrate that JNK signaling is the major early pathway triggering RGC death after axonal injury and may directly link axon injury to transcriptional activity that controls RGC death.
doi:10.1016/j.nbd.2012.02.003
PMCID: PMC3323666  PMID: 22353563
JNK; axonal injury; apoptosis; retinal ganglion cell; cJUN; mouse; neurodegeneration; neuroprotection; glaucoma
11.  Hepatocyte Growth Factor Genetic Variations and Primary Angle-Closure Glaucoma in the Han Chinese Population 
PLoS ONE  2013;8(4):e60950.
Purpose
The aim of this study is to examine whether or not hepatocyte growth factor (HGF) genetic variations are associated with susceptibility to primary angle-closure glaucoma (PACG) in the Han Chinese population.
Methods
Three single-nucleotide polymorphisms (SNPs)–rs5745718, rs17427817, and rs3735520–in the HGF gene were genotyped in 238 adult patients with PACG and 287 age-, sex-, and ethnically matched healthy controls by using a polymerase chain reaction restriction fragment length polymorphism assay. Data was analyzed by χ2 analysis.
Results
The three tested analyzed polymorphisms in the HGF gene were in Hardy-Weinberg equilibrium, in all the subjects. The frequencies of the genotype and allele of rs5745718 and rs1742817 in the HGF gene were significantly different between the PACG patients and the controls. On one hand, the frequencies of the CC genotype and C allele of rs5745718 were significantly decreased in PACG patients compared with controls (Pc = 1.40×10−3; Pc = 3.21×10−4, respectively); however, on the other hand, significantly decreased frequencies of the GG genotype and the G allele of rs17427817 were observed in PACG patients compared with the controls (Pc = 0.006,; Pc = 6.06×10−4, respectively). A comparison of the distributions of the genotypes and alleles of rs3735520 showed no statistically significant differences between the PACG patients and the controls (pc>0.05). The haplotype analysis results showed that the CGC haplotype frequency was significantly decreased in the patients with PACG compared with the controls (pc<0.001). No difference was detected between the patients and the controls with regard to the other haplotypes.
Conclusions
Our study suggests that rs5745718 and rs17427817 are associated with a decreased risk of PACG in the Chinese Han population. The CGC haplotype was demonstrated to possibly play a protective role against PACG in this population.
doi:10.1371/journal.pone.0060950
PMCID: PMC3621997  PMID: 23585864
12.  Soluble Guanylate Cyclase α1–Deficient Mice: A Novel Murine Model for Primary Open Angle Glaucoma 
PLoS ONE  2013;8(3):e60156.
Primary open angle glaucoma (POAG) is a leading cause of blindness worldwide. The molecular signaling involved in the pathogenesis of POAG remains unknown. Here, we report that mice lacking the α1 subunit of the nitric oxide receptor soluble guanylate cyclase represent a novel and translatable animal model of POAG, characterized by thinning of the retinal nerve fiber layer and loss of optic nerve axons in the context of an open iridocorneal angle. The optic neuropathy associated with soluble guanylate cyclase α1–deficiency was accompanied by modestly increased intraocular pressure and retinal vascular dysfunction. Moreover, data from a candidate gene association study suggests that a variant in the locus containing the genes encoding for the α1 and β1 subunits of soluble guanylate cyclase is associated with POAG in patients presenting with initial paracentral vision loss, a disease subtype thought to be associated with vascular dysregulation. These findings provide new insights into the pathogenesis and genetics of POAG and suggest new therapeutic strategies for POAG.
doi:10.1371/journal.pone.0060156
PMCID: PMC3603933  PMID: 23527308
13.  Gene Expression and Functional Annotation of the Human Ciliary Body Epithelia 
PLoS ONE  2012;7(9):e44973.
Purpose
The ciliary body (CB) of the human eye consists of the non-pigmented (NPE) and pigmented (PE) neuro-epithelia. We investigated the gene expression of NPE and PE, to shed light on the molecular mechanisms underlying the most important functions of the CB. We also developed molecular signatures for the NPE and PE and studied possible new clues for glaucoma.
Methods
We isolated NPE and PE cells from seven healthy human donor eyes using laser dissection microscopy. Next, we performed RNA isolation, amplification, labeling and hybridization against 44×k Agilent microarrays. For microarray conformations, we used a literature study, RT-PCRs, and immunohistochemical stainings. We analyzed the gene expression data with R and with the knowledge database Ingenuity.
Results
The gene expression profiles and functional annotations of the NPE and PE were highly similar. We found that the most important functionalities of the NPE and PE were related to developmental processes, neural nature of the tissue, endocrine and metabolic signaling, and immunological functions. In total 1576 genes differed statistically significantly between NPE and PE. From these genes, at least 3 were cell-specific for the NPE and 143 for the PE. Finally, we observed high expression in the (N)PE of 35 genes previously implicated in molecular mechanisms related to glaucoma.
Conclusion
Our gene expression analysis suggested that the NPE and PE of the CB were quite similar. Nonetheless, cell-type specific differences were found. The molecular machineries of the human NPE and PE are involved in a range of neuro-endocrinological, developmental and immunological functions, and perhaps glaucoma.
doi:10.1371/journal.pone.0044973
PMCID: PMC3445623  PMID: 23028713
14.  Transcriptomic Analysis of the Developing and Adult Mouse Cochlear Sensory Epithelia 
PLoS ONE  2012;7(8):e42987.
The adult mammalian cochlea lacks regenerative ability and the irreversible degeneration of cochlear sensory hair cells leads to permanent hearing loss. Previous data show that early postnatal cochlea harbors stem/progenitor-like cells and shows a limited regenerative/repair capacity. These properties are progressively lost later during the postnatal development. Little is known about the genes and pathways that are potentially involved in this difference of the regenerative/repair potentialities between early postnatal and adult mammalian cochlear sensory epithelia (CSE). The goal of our study is to investigate the transcriptomic profiles of these two stages. We used Mouse Genome 430 2.0 microarray to perform an extensive analysis of the genes expressed in mouse postnatal day-3 (P3) and adult CSE. Statistical analysis of microarray data was performed using SAM (Significance Analysis of Microarrays) software. We identified 5644 statistically significant differentially expressed transcripts with a fold change (FC) >2 and a False Discovery Rate (FDR) ≤0.05. The P3 CSE signature included 3,102 transcripts, among which were known genes in the cochlea, but also new transcripts such as, Hmga2 (high mobility group AT-hook 2) and Nrarp (Notch-regulated ankyrin repeat protein). The adult CSE overexpressed 2,542 transcripts including new transcripts, such as Prl (Prolactin) and Ar (Androgen receptor), that previously were not known to be expressed in the adult cochlea. Our comparative study revealed important genes and pathways differentially expressed between the developing and adult CSE. The identification of new candidate genes would be useful as potential markers of the maintenance or the loss of stem cells and regenerative/repair ability during mammalian cochlear development.
doi:10.1371/journal.pone.0042987
PMCID: PMC3416779  PMID: 22900075
15.  Mutations in a P-Type ATPase Gene Cause Axonal Degeneration 
PLoS Genetics  2012;8(8):e1002853.
Neuronal loss and axonal degeneration are important pathological features of many neurodegenerative diseases. The molecular mechanisms underlying the majority of axonal degeneration conditions remain unknown. To better understand axonal degeneration, we studied a mouse mutant wabbler-lethal (wl). Wabbler-lethal (wl) mutant mice develop progressive ataxia with pronounced neurodegeneration in the central and peripheral nervous system. Previous studies have led to a debate as to whether myelinopathy or axonopathy is the primary cause of neurodegeneration observed in wl mice. Here we provide clear evidence that wabbler-lethal mutants develop an axonopathy, and that this axonopathy is modulated by Wlds and Bax mutations. In addition, we have identified the gene harboring the disease-causing mutations as Atp8a2. We studied three wl alleles and found that all result from mutations in the Atp8a2 gene. Our analysis shows that ATP8A2 possesses phosphatidylserine translocase activity and is involved in localization of phosphatidylserine to the inner leaflet of the plasma membrane. Atp8a2 is widely expressed in the brain, spinal cord, and retina. We assessed two of the mutant alleles of Atp8a2 and found they are both nonfunctional for the phosphatidylserine translocase activity. Thus, our data demonstrate for the first time that mutation of a mammalian phosphatidylserine translocase causes axon degeneration and neurodegenerative disease.
Author Summary
Axonal degeneration is an important pathological feature of many neurodegenerative diseases, such as Alzheimer disease, Parkinson's disease, and amyotrophic lateral sclerosis. In most of these disease conditions, molecular mechanisms of axonal degeneration remain largely unknown. Spontaneous mouse mutants are important in human disease studies. Identification of a disease-causing gene in mice can lead to the identification of the human ortholog as the disease gene in humans. This approach has the power to identify unexpected genes and pathways involved in disease. Our study centered on wabbler lethal (wl) mutant mice, which display axonal degeneration in both the central and peripheral nervous systems. We identified the disease-causing gene in mice with different wl mutations. The mutations are in Atp8a2, a gene encoding a phosphatidylserine translocase. This protein functions to keep phosphatidylserine enriched to the inner leaflet of the plasma membrane. Our study demonstrates a new role for phospholipid asymmetry in maintaining axon health, and it also reveals a novel function for phosphatidyleserine translocase in neurodegenerative diseases.
doi:10.1371/journal.pgen.1002853
PMCID: PMC3415440  PMID: 22912588
16.  Retinal Ganglion Cell Loss Is Accompanied by Antibody Depositions and Increased Levels of Microglia after Immunization with Retinal Antigens 
PLoS ONE  2012;7(7):e40616.
Background
Antibodies against retinal and optic nerve antigens are detectable in glaucoma patients. Recent studies using a model of experimental autoimmune glaucoma demonstrated that immunization with certain ocular antigens causes an immun-mediated retinal ganglion cell loss in rats.
Methodology/Principal Findings
Rats immunized with a retinal ganglion cell layer homogenate (RGA) had a reduced retinal ganglion cell density on retinal flatmounts (p = 0.007) and a lower number of Brn3+retinal ganglion cells (p = 0.0001) after six weeks. The autoreactive antibody development against retina and optic nerve was examined throughout the study. The levels of autoreactive antibodies continuously increased up to 6 weeks (retina: p = 0.004; optic nerve: p = 0.000003). Additionally, antibody deposits were detected in the retina (p = 0.02). After 6 weeks a reactive gliosis (GFAP density: RGA: 174.7±41.9; CO: 137.6±36.8, p = 0.0006; %GFAP+ area: RGA: 8.5±3.4; CO: 5.9±3.6, p = 0.006) as well as elevated level of Iba1+ microglia cells (p = 0.003) was observed in retinas of RGA animals.
Conclusions/Significance
Our findings suggest that these antibodies play a substantial role in mechanisms leading to retinal ganglion cell death. This seems to lead to glia cell activation as well as the invasion of microglia, which might be associated with debris clearance.
doi:10.1371/journal.pone.0040616
PMCID: PMC3406064  PMID: 22848388
17.  The Bcl-2 family member BIM has multiple glaucoma-relevant functions in DBA/2J mice 
Scientific Reports  2012;2:530.
Axonal insult induces retinal ganglion cell (RGC) death through a BAX-dependent process. The pro-apoptotic Bcl-2 family member BIM is known to induce BAX activation. BIM expression increased in RGCs after axonal injury and its induction was dependent on JUN. Partial and complete Bim deficiency delayed RGC death after mechanical optic nerve injury. However, in a mouse model of glaucoma, DBA/2J mice, Bim deficiency did not prevent RGC death in eyes with severe optic nerve degeneration. In a subset of DBA/2J mice, Bim deficiency altered disease progression resulting in less severe nerve damage. Bim deficient mice exhibited altered optic nerve head morphology and significantly lessened intraocular pressure elevation. Thus, a decrease in axonal degeneration in Bim deficient DBA/2J mice may not be caused by a direct role of Bim in RGCs. These data suggest that BIM has multiple roles in glaucoma pathophysiology, potentially affecting susceptibility to glaucoma through several mechanisms.
doi:10.1038/srep00530
PMCID: PMC3404412  PMID: 22833783
18.  AAV-Mediated Cone Rescue in a Naturally Occurring Mouse Model of CNGA3-Achromatopsia 
PLoS ONE  2012;7(4):e35250.
Achromatopsia is a rare autosomal recessive disorder which shows color blindness, severely impaired visual acuity, and extreme sensitivity to bright light. Mutations in the alpha subunits of the cone cyclic nucleotide-gated channels (CNGA3) are responsible for about 1/4 of achromatopsia in the U.S. and Europe. Here, we test whether gene replacement therapy using an AAV5 vector could restore cone-mediated function and arrest cone degeneration in the cpfl5 mouse, a naturally occurring mouse model of achromatopsia with a CNGA3 mutation. We show that gene therapy leads to significant rescue of cone-mediated ERGs, normal visual acuities and contrast sensitivities. Normal expression and outer segment localization of both M- and S-opsins were maintained in treated retinas. The therapeutic effect of treatment lasted for at least 5 months post-injection. This study is the first demonstration of substantial, relatively long-term restoration of cone-mediated light responsiveness and visual behavior in a naturally occurring mouse model of CNGA3 achromatopsia. The results provide the foundation for development of an AAV5-based gene therapy trial for human CNGA3 achromatopsia.
doi:10.1371/journal.pone.0035250
PMCID: PMC3324465  PMID: 22509403
19.  The Neuronal EGF-Related Gene Nell2 Interacts with Macf1 and Supports Survival of Retinal Ganglion Cells after Optic Nerve Injury 
PLoS ONE  2012;7(4):e34810.
Nell2 is a neuron-specific protein containing six epidermal growth factor-like domains. We have identified Nell2 as a retinal ganglion cell (RGC)-expressed gene by comparing mRNA profiles of control and RGC-deficient rat retinas. The aim of this study was to analyze Nell2 expression in wild-type and optic nerve axotomized retinas and evaluate its potential role in RGCs. Nell2-positive in situ and immunohistochemical signals were localized to irregularly shaped cells in the ganglion cell layer (GCL) and colocalized with retrogradely-labeled RGCs. No Nell2-positive cells were detected in 2 weeks optic nerve transected (ONT) retinas characterized with approximately 90% RGC loss. RT-PCR analysis showed a dramatic decrease in the Nell2 mRNA level after ONT compared to the controls. Immunoblot analysis of the Nell2 expression in the retina revealed the presence of two proteins with approximate MW of 140 and 90 kDa representing glycosylated and non-glycosylated Nell2, respectively. Both products were almost undetectable in retinal protein extracts two weeks after ONT. Proteome analysis of Nell2-interacting proteins carried out with MALDI-TOF MS (MS) identified microtubule-actin crosslinking factor 1 (Macf1), known to be critical in CNS development. Strong Macf1 expression was observed in the inner plexiform layer and GCL where it was colocalizied with Thy-1 staining. Since Nell2 has been reported to increase neuronal survival of the hippocampus and cerebral cortex, we evaluated the effect of Nell2 overexpression on RGC survival. RGCs in the nasal retina were consistently more efficiently transfected than in other areas (49% vs. 13%; n = 5, p<0.05). In non-transfected or pEGFP-transfected ONT retinas, the loss of RGCs was approximately 90% compared to the untreated control. In the nasal region, Nell2 transfection led to the preservation of approximately 58% more cells damaged by axotomy compared to non-transfected (n = 5, p<0.01) or pEGFP-transfected controls (n = 5, p<0.01).
doi:10.1371/journal.pone.0034810
PMCID: PMC3319615  PMID: 22496866
20.  Radiation treatment inhibits monocyte entry into the optic nerve head and prevents neuronal damage in a mouse model of glaucoma 
The Journal of Clinical Investigation  2012;122(4):1246-1261.
Glaucoma is a common ocular disorder that is a leading cause of blindness worldwide. It is characterized by the dysfunction and loss of retinal ganglion cells (RGCs). Although many studies have implicated various molecules in glaucoma, no mechanism has been shown to be responsible for the earliest detectable damage to RGCs and their axons in the optic nerve. Here, we show that the leukocyte transendothelial migration pathway is activated in the optic nerve head at the earliest stages of disease in an inherited mouse model of glaucoma. This resulted in proinflammatory monocytes entering the optic nerve prior to detectable neuronal damage. A 1-time x-ray treatment prevented monocyte entry and subsequent glaucomatous damage. A single x-ray treatment of an individual eye in young mice provided that eye with long-term protection from glaucoma but had no effect on the contralateral eye. Localized radiation treatment prevented detectable neuronal damage and dysfunction in treated eyes, despite the continued presence of other glaucomatous stresses and signaling pathways. Injection of endothelin-2, a damaging mediator produced by the monocytes, into irradiated eyes, combined with the other glaucomatous stresses, restored neural damage with a topography characteristic of glaucoma. Together, these data support a model of glaucomatous damage involving monocyte entry into the optic nerve.
doi:10.1172/JCI61135
PMCID: PMC3314470  PMID: 22426214
21.  Adaptive optics retinal imaging in the living mouse eye 
Biomedical Optics Express  2012;3(4):715-734.
Correction of the eye’s monochromatic aberrations using adaptive optics (AO) can improve the resolution of in vivo mouse retinal images [Biss et al., Opt. Lett. 32(6), 659 (2007) and Alt et al., Proc. SPIE 7550, 755019 (2010)], but previous attempts have been limited by poor spot quality in the Shack-Hartmann wavefront sensor (SHWS). Recent advances in mouse eye wavefront sensing using an adjustable focus beacon with an annular beam profile have improved the wavefront sensor spot quality [Geng et al., Biomed. Opt. Express 2(4), 717 (2011)], and we have incorporated them into a fluorescence adaptive optics scanning laser ophthalmoscope (AOSLO). The performance of the instrument was tested on the living mouse eye, and images of multiple retinal structures, including the photoreceptor mosaic, nerve fiber bundles, fine capillaries and fluorescently labeled ganglion cells were obtained. The in vivo transverse and axial resolutions of the fluorescence channel of the AOSLO were estimated from the full width half maximum (FWHM) of the line and point spread functions (LSF and PSF), and were found to be better than 0.79 μm ± 0.03 μm (STD)(45% wider than the diffraction limit) and 10.8 μm ± 0.7 μm (STD)(two times the diffraction limit), respectively. The axial positional accuracy was estimated to be 0.36 μm. This resolution and positional accuracy has allowed us to classify many ganglion cell types, such as bistratified ganglion cells, in vivo.
doi:10.1364/BOE.3.000715
PMCID: PMC3345801  PMID: 22574260
(170.4460) Ophthalmic optics and devices; (110.1080) Active or adaptive optics; (330.7324) Visual optics, comparative animal models
22.  PGC-1α Determines Light Damage Susceptibility of the Murine Retina 
PLoS ONE  2012;7(2):e31272.
The peroxisome proliferator-activated receptor γ coactivator 1 (PGC-1) proteins are key regulators of cellular bioenergetics and are accordingly expressed in tissues with a high energetic demand. For example, PGC-1α and PGC-1β control organ function of brown adipose tissue, heart, brain, liver and skeletal muscle. Surprisingly, despite their prominent role in the control of mitochondrial biogenesis and oxidative metabolism, expression and function of the PGC-1 coactivators in the retina, an organ with one of the highest energy demands per tissue weight, are completely unknown. Moreover, the molecular mechanisms that coordinate energy production with repair processes in the damaged retina remain enigmatic. In the present study, we thus investigated the expression and function of the PGC-1 coactivators in the healthy and the damaged retina. We show that PGC-1α and PGC-1β are found at high levels in different structures of the mouse retina, most prominently in the photoreceptors. Furthermore, PGC-1α knockout mice suffer from a striking deterioration in retinal morphology and function upon detrimental light exposure. Gene expression studies revealed dysregulation of all major pathways involved in retinal damage and apoptosis, repair and renewal in the PGC-1α knockouts. The light-induced increase in apoptosis in vivo in the absence of PGC-1α was substantiated in vitro, where overexpression of PGC-1α evoked strong anti-apoptotic effects. Finally, we found that retinal levels of PGC-1 expression are reduced in different mouse models for retinitis pigmentosa. We demonstrate that PGC-1α is a central coordinator of energy production and, importantly, all of the major processes involved in retinal damage and subsequent repair. Together with the observed dysregulation of PGC-1α and PGC-1β in retinitis pigmentosa mouse models, these findings thus imply that PGC-1α might be an attractive target for therapeutic approaches aimed at retinal degeneration diseases.
doi:10.1371/journal.pone.0031272
PMCID: PMC3278422  PMID: 22348062
23.  Ocular Fibroblast Diversity: Implications for Inflammation and Ocular Wound Healing 
Fibroblasts mediate immune function and may account for differences in susceptibility of the different ocular tissues to become inflamed. Recognizing these differences will promote the development of novel therapeutic strategies for diseases of the eye.
Purpose.
Various ocular and orbital tissues differ in their manifestations of inflammation, although the reasons for this are unclear. Such differences may be due to behaviors exhibited by resident cell types, including fibroblasts. Fibroblasts mediate immune function and produce inflammatory mediators. Chronic stimulation of ocular fibroblasts can lead to prolonged inflammation and, in turn, to impaired vision and blindness. Interleukin (IL)-1β, which is produced by various cells during inflammation, is a potent activator of fibroblasts and inducer of the expression of inflammatory mediators. The hypothesis for this study was that that human fibroblasts derived from distinct ocular tissues differ in their responses to IL-1β and that variations in the IL-1 signaling pathway account for these differences.
Methods.
Human fibroblasts were isolated from the lacrimal gland, cornea, and Tenon's capsule and treated with IL-1β in vitro. Cytokine and prostaglandin (PG)E2 production were measured by ELISA and EIA. Cyclooxygenase (Cox)-2 expression was detected by Western blot. Components of the IL-1 signaling pathway were detected by flow cytometry, ELISA, Western blot, and immunofluorescence.
Results.
Cytokine and PGE2 production and Cox-2 expression were greatest in corneal fibroblasts. VEGF production was greatest in Tenon's capsule fibroblasts. Variations in IL-1 receptor and receptor antagonist expression, IκBα degradation and p65 nuclear translocation, however, did not account for these differences, but overexpression of the NF-κB member RelB dampened Cox-2 expression in all three fibroblast types.
Conclusions.
The results highlight the inherent differences between ocular fibroblast strains and provide crucial insight into novel, tissue-specific treatments for ocular inflammation and disease, such as RelB overexpression.
doi:10.1167/iovs.10-7066
PMCID: PMC3175934  PMID: 21571679
24.  Intravitreal Injection of AAV2 Transduces Macaque Inner Retina 
Intravitreally injected AAV2 transduced inner retinal cells in a restricted region at the macaque fovea. Because macaque and human eyes are similar, the results suggest a need to improve transduction methods in gene therapy for the human inner retina.
Purpose.
Adeno-associated virus serotype 2 (AAV2) has been shown to be effective in transducing inner retinal neurons after intravitreal injection in several species. However, results in nonprimates may not be predictive of transduction in the human inner retina, because of differences in eye size and the specialized morphology of the high-acuity human fovea. This was a study of inner retina transduction in the macaque, a primate with ocular characteristics most similar to that of humans.
Methods.
In vivo imaging and histology were used to examine GFP expression in the macaque inner retina after intravitreal injection of AAV vectors containing five distinct promoters.
Results.
AAV2 produced pronounced GFP expression in inner retinal cells of the fovea, no expression in the central retina beyond the fovea, and variable expression in the peripheral retina. AAV2 vector incorporating the neuronal promoter human connexin 36 (hCx36) transduced ganglion cells within a dense annulus around the fovea center, whereas AAV2 containing the ubiquitous promoter hybrid cytomegalovirus (CMV) enhancer/chicken-β-actin (CBA) transduced both Müller and ganglion cells in a dense circular disc centered on the fovea. With three shorter promoters—human synapsin (hSYN) and the shortened CBA and hCx36 promoters (smCBA and hCx36sh)—AAV2 produced visible transduction, as seen in fundus images, only when the retina was altered by ganglion cell loss or enzymatic vitreolysis.
Conclusions.
The results in the macaque suggest that intravitreal injection of AAV2 would produce high levels of gene expression at the human fovea, important in retinal gene therapy, but not in the central retina beyond the fovea.
doi:10.1167/iovs.10-6250
PMCID: PMC3088562  PMID: 21310920
25.  Datgan, a reusable software system for facile interrogation and visualization of complex transcription profiling data 
BMC Genomics  2011;12:429.
Background
We introduce Glaucoma Discovery Platform (GDP), an online environment for facile visualization and interrogation of complex transcription profiling datasets for glaucoma. We also report the availability of Datgan, the suite of scripts that was developed to construct GDP. This reusable software system complements existing repositories such as NCBI GEO or EBI ArrayExpress as it allows the construction of searchable databases to maximize understanding of user-selected transcription profiling datasets.
Description
Datgan scripts were used to construct both the underlying data tables and the web interface that form GDP. GDP is populated using data from a mouse model of glaucoma. The data was generated using the DBA/2J strain, a widely used mouse model of glaucoma. The DBA/2J-Gpnmb+ strain provided a genetically matched control strain that does not develop glaucoma. We separately assessed both the retina and the optic nerve head, important tissues in glaucoma. We used hierarchical clustering to identify early molecular stages of glaucoma that could not be identified using morphological assessment of disease. GDP has two components. First, an interactive search and retrieve component provides the ability to assess gene(s) of interest in all identified stages of disease in both the retina and optic nerve head. The output is returned in graphical and tabular format with statistically significant differences highlighted for easy visual analysis. Second, a bulk download component allows lists of differentially expressed genes to be retrieved as a series of files compatible with Excel. To facilitate access to additional information available for genes of interest, GDP is linked to selected external resources including Mouse Genome Informatics and Online Medelian Inheritance in Man (OMIM).
Conclusion
Datgan-constructed databases allow user-friendly access to datasets that involve temporally ordered stages of disease or developmental stages. Datgan and GDP are available from http://glaucomadb.jax.org/glaucoma.
doi:10.1186/1471-2164-12-429
PMCID: PMC3171729  PMID: 21864367

Results 1-25 (41)