Search tips
Search criteria

Results 1-11 (11)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Transcriptional Network Analysis in Muscle Reveals AP-1 as a Partner of PGC-1α in the Regulation of the Hypoxic Gene Program 
Molecular and Cellular Biology  2014;34(16):2996-3012.
Skeletal muscle tissue shows an extraordinary cellular plasticity, but the underlying molecular mechanisms are still poorly understood. Here, we use a combination of experimental and computational approaches to unravel the complex transcriptional network of muscle cell plasticity centered on the peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a regulatory nexus in endurance training adaptation. By integrating data on genome-wide binding of PGC-1α and gene expression upon PGC-1α overexpression with comprehensive computational prediction of transcription factor binding sites (TFBSs), we uncover a hitherto-underestimated number of transcription factor partners involved in mediating PGC-1α action. In particular, principal component analysis of TFBSs at PGC-1α binding regions predicts that, besides the well-known role of the estrogen-related receptor α (ERRα), the activator protein 1 complex (AP-1) plays a major role in regulating the PGC-1α-controlled gene program of the hypoxia response. Our findings thus reveal the complex transcriptional network of muscle cell plasticity controlled by PGC-1α.
PMCID: PMC4135604  PMID: 24912679
2.  PGC-1α Improves Glucose Homeostasis in Skeletal Muscle in an Activity-Dependent Manner 
Diabetes  2012;62(1):85-95.
Metabolic disorders are a major burden for public health systems globally. Regular exercise improves metabolic health. Pharmacological targeting of exercise mediators might facilitate physical activity or amplify the effects of exercise. The peroxisome proliferator–activated receptor γ coactivator 1α (PGC-1α) largely mediates musculoskeletal adaptations to exercise, including lipid refueling, and thus constitutes such a putative target. Paradoxically, forced expression of PGC-1α in muscle promotes diet-induced insulin resistance in sedentary animals. We show that elevated PGC-1α in combination with exercise preferentially improves glucose homeostasis, increases Krebs cycle activity, and reduces the levels of acylcarnitines and sphingosine. Moreover, patterns of lipid partitioning are altered in favor of enhanced insulin sensitivity in response to combined PGC-1α and exercise. Our findings reveal how physical activity improves glucose homeostasis. Furthermore, our data suggest that the combination of elevated muscle PGC-1α and exercise constitutes a promising approach for the treatment of metabolic disorders.
PMCID: PMC3526021  PMID: 23086035
3.  The Corepressor NCoR1 Antagonizes PGC-1α and Estrogen-Related Receptor α in the Regulation of Skeletal Muscle Function and Oxidative Metabolism 
Molecular and Cellular Biology  2012;32(24):4913-4924.
Skeletal muscle exhibits a high plasticity and accordingly can quickly adapt to different physiological and pathological stimuli by changing its phenotype largely through diverse epigenetic mechanisms. The nuclear receptor corepressor 1 (NCoR1) has the ability to mediate gene repression; however, its role in regulating biological programs in skeletal muscle is still poorly understood. We therefore studied the mechanistic and functional aspects of NCoR1 function in this tissue. NCoR1 muscle-specific knockout mice exhibited a 7.2% higher peak oxygen consumption (VO2peak), a 11% reduction in maximal isometric force, and increased ex vivo fatigue resistance during maximal stimulation. Interestingly, global gene expression analysis revealed a high overlap between the effects of NCoR1 deletion and peroxisome proliferator-activated receptor gamma (PPARγ) coactivator 1α (PGC-1α) overexpression on oxidative metabolism in muscle. Importantly, PPARβ/δ and estrogen-related receptor α (ERRα) were identified as common targets of NCoR1 and PGC-1α with opposing effects on the transcriptional activity of these nuclear receptors. In fact, the repressive effect of NCoR1 on oxidative phosphorylation gene expression specifically antagonizes PGC-1α-mediated coactivation of ERRα. We therefore delineated the molecular mechanism by which a transcriptional network controlled by corepressor and coactivator proteins determines the metabolic properties of skeletal muscle, thus representing a potential therapeutic target for metabolic diseases.
PMCID: PMC3510532  PMID: 23028049
4.  Differential response of skeletal muscles to mTORC1 signaling during atrophy and hypertrophy 
Skeletal Muscle  2013;3:6.
Skeletal muscle mass is determined by the balance between protein synthesis and degradation. Mammalian target of rapamycin complex 1 (mTORC1) is a master regulator of protein translation and has been implicated in the control of muscle mass. Inactivation of mTORC1 by skeletal muscle-specific deletion of its obligatory component raptor results in smaller muscles and a lethal dystrophy. Moreover, raptor-deficient muscles are less oxidative through changes in the expression PGC-1α, a critical determinant of mitochondrial biogenesis. These results suggest that activation of mTORC1 might be beneficial to skeletal muscle by providing resistance to muscle atrophy and increasing oxidative function. Here, we tested this hypothesis by deletion of the mTORC1 inhibitor tuberous sclerosis complex (TSC) in muscle fibers.
Skeletal muscles of mice with an acute or a permanent deletion of raptor or TSC1 were examined using histological, biochemical and molecular biological methods. Response of the muscles to changes in mechanical load and nerve input was investigated by ablation of synergistic muscles or by denervation .
Genetic deletion or knockdown of raptor, causing inactivation of mTORC1, was sufficient to prevent muscle growth and enhance muscle atrophy. Conversely, short-term activation of mTORC1 by knockdown of TSC induced muscle fiber hypertrophy and atrophy-resistance upon denervation, in both fast tibialis anterior (TA) and slow soleus muscles. Surprisingly, however, sustained activation of mTORC1 by genetic deletion of Tsc1 caused muscle atrophy in all but soleus muscles. In contrast, oxidative capacity was increased in all muscles examined. Consistently, TSC1-deficient soleus muscle was atrophy-resistant whereas TA underwent normal atrophy upon denervation. Moreover, upon overloading, plantaris muscle did not display enhanced hypertrophy compared to controls. Biochemical analysis indicated that the atrophy response of muscles was based on the suppressed phosphorylation of PKB/Akt via feedback inhibition by mTORC1 and subsequent increased expression of the E3 ubiquitin ligases MuRF1 and atrogin-1/MAFbx. In contrast, expression of both E3 ligases was not increased in soleus muscle suggesting the presence of compensatory mechanisms in this muscle.
Our study shows that the mTORC1- and the PKB/Akt-FoxO pathways are tightly interconnected and differentially regulated depending on the muscle type. These results indicate that long-term activation of the mTORC1 signaling axis is not a therapeutic option to promote muscle growth because of its strong feedback induction of the E3 ubiquitin ligases involved in protein degradation.
PMCID: PMC3622636  PMID: 23497627
Skeletal muscle; Hypertrophy; Atrophy; Mammalian target of rapamycin complex 1 (mTORC1); Raptor; Tuberous sclerosis complex (TSC); PKB/Akt; FoxO; MuRF1; Atrogin-1/MAFbx
5.  PGC-1α Determines Light Damage Susceptibility of the Murine Retina 
PLoS ONE  2012;7(2):e31272.
The peroxisome proliferator-activated receptor γ coactivator 1 (PGC-1) proteins are key regulators of cellular bioenergetics and are accordingly expressed in tissues with a high energetic demand. For example, PGC-1α and PGC-1β control organ function of brown adipose tissue, heart, brain, liver and skeletal muscle. Surprisingly, despite their prominent role in the control of mitochondrial biogenesis and oxidative metabolism, expression and function of the PGC-1 coactivators in the retina, an organ with one of the highest energy demands per tissue weight, are completely unknown. Moreover, the molecular mechanisms that coordinate energy production with repair processes in the damaged retina remain enigmatic. In the present study, we thus investigated the expression and function of the PGC-1 coactivators in the healthy and the damaged retina. We show that PGC-1α and PGC-1β are found at high levels in different structures of the mouse retina, most prominently in the photoreceptors. Furthermore, PGC-1α knockout mice suffer from a striking deterioration in retinal morphology and function upon detrimental light exposure. Gene expression studies revealed dysregulation of all major pathways involved in retinal damage and apoptosis, repair and renewal in the PGC-1α knockouts. The light-induced increase in apoptosis in vivo in the absence of PGC-1α was substantiated in vitro, where overexpression of PGC-1α evoked strong anti-apoptotic effects. Finally, we found that retinal levels of PGC-1 expression are reduced in different mouse models for retinitis pigmentosa. We demonstrate that PGC-1α is a central coordinator of energy production and, importantly, all of the major processes involved in retinal damage and subsequent repair. Together with the observed dysregulation of PGC-1α and PGC-1β in retinitis pigmentosa mouse models, these findings thus imply that PGC-1α might be an attractive target for therapeutic approaches aimed at retinal degeneration diseases.
PMCID: PMC3278422  PMID: 22348062
6.  ApoE−/− PGC-1α−/− Mice Display Reduced IL-18 Levels and Do Not Develop Enhanced Atherosclerosis 
PLoS ONE  2010;5(10):e13539.
Atherosclerosis is a chronic inflammatory disease that evolves from the interaction of activated endothelial cells, macrophages, lymphocytes and modified lipoproteins (LDLs). In the last years many molecules with crucial metabolic functions have been shown to prevent important steps in the progression of atherogenesis, including peroxisome proliferator activated receptors (PPARs) and the class III histone deacetylase (HDAC) SIRT1. The PPARγ coactivator 1 alpha (Ppargc1a or PGC-1α) was identified as an important transcriptional cofactor of PPARγ and is activated by SIRT1. The aim of this study was to analyze total PGC-1α deficiency in an atherosclerotic mouse model.
Methodology/Principal Findings
To investigate if total PGC-1α deficiency affects atherosclerosis, we compared ApoE−/− PGC-1α−/− and ApoE−/− PGC-1α+/+ mice kept on a high cholesterol diet. Despite having more macrophages and a higher ICAM-1 expression in plaques, ApoE−/− PGC-1α−/− did not display more or larger atherosclerotic plaques than their ApoE−/− PGC-1α+/+ littermates. In line with the previously published phenotype of PGC-1α−/− mice, ApoE−/− PGC-1α−/− mice had marked reduced body, liver and epididymal white adipose tissue (WAT) weight. VLDL/LDL-cholesterol and triglyceride contents were also reduced. Aortic expression of PPARα and PPARγ, two crucial regulators for adipocyte differentitation and glucose and lipid metabolism, as well as the expression of some PPAR target genes was significantly reduced in ApoE−/− PGC-1α−/− mice. Importantly, the epididymal WAT and aortic expression of IL-18 and IL-18 plasma levels, a pro-atherosclerotic cytokine, was markedly reduced in ApoE−/− PGC-1α−/− mice.
ApoE−/− PGC-1α−/− mice, similar as PGC-1α−/− mice exhibit markedly reduced total body and visceral fat weight. Since inflammation of visceral fat is a crucial trigger of atherogenesis, decreased visceral fat in PGC-1α-deficient mice may explain why these mice do not develop enhanced atherosclerosis.
PMCID: PMC2962638  PMID: 21042583
7.  Electric Pulse Stimulation of Cultured Murine Muscle Cells Reproduces Gene Expression Changes of Trained Mouse Muscle 
PLoS ONE  2010;5(6):e10970.
Adequate levels of physical activity are at the center of a healthy lifestyle. However, the molecular mechanisms that mediate the beneficial effects of exercise remain enigmatic. This gap in knowledge is caused by the lack of an amenable experimental model system. Therefore, we optimized electric pulse stimulation of muscle cells to closely recapitulate the plastic changes in gene expression observed in a trained skeletal muscle. The exact experimental conditions were established using the peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) as a marker for an endurance-trained muscle fiber. We subsequently compared the changes in the relative expression of metabolic and myofibrillar genes in the muscle cell system with those observed in mouse muscle in vivo following either an acute or repeated bouts of treadmill exercise. Importantly, in electrically stimulated C2C12 mouse muscle cells, the qualitative transcriptional adaptations were almost identical to those in trained muscle, but differ from the acute effects of exercise on muscle gene expression. In addition, significant alterations in the expression of myofibrillar proteins indicate that this stimulation could be used to modulate the fiber-type of muscle cells in culture. Our data thus describe an experimental cell culture model for the study of at least some of the transcriptional aspects of skeletal muscle adaptation to physical activity. This system will be useful for the study of the molecular mechanisms that regulate exercise adaptation in muscle.
PMCID: PMC2881042  PMID: 20532042
8.  SIRT1 reduces endothelial activation without affecting vascular function in ApoE-/- mice 
Aging (Albany NY)  2010;2(6):353-360.
Excessive production of reactive oxygen species (ROS) contributes to progression of atherosclerosis, at least in part by causing endothelial dysfunction and inflammatory activation. The class III histone deacetylase SIRT1 has been implicated in extension of lifespan. In the vasculature,SIRT1 gain-of-function using SIRT1 overexpression or activation has been shown to improve endothelial function in mice and rats via stimulation of endothelial nitric oxide (NO) synthase (eNOS). However, the effects of SIRT1 loss-of-function on the endothelium in atherosclerosis remain to be characterized. Thus, we have investigated the endothelial effects of decreased endogenous SIRT1 in hypercholesterolemic ApoE-/- mice. We observed no difference in endothelial relaxation and eNOS (Ser1177) phosphorylation between 20-week old male atherosclerotic ApoE-/- SIRT1+/- and ApoE-/- SIRT1+/+ mice. However, SIRT1 prevented endothelial superoxide production, inhibited NF-κB signaling, and diminished expression of adhesion molecules. Treatment of young hypercholesterolemic ApoE-/- SIRT1+/- mice with lipopolysaccharide to boost NF-κB signaling led to a more pronounced endothelial expression of ICAM-1 and VCAM-1 as compared to ApoE-/- SIRT1+/+ mice. In conclusion, endogenous SIRT1 diminishes endothelial activation in ApoE-/- mice, but does not affect endothelium-dependent vasodilatation.
PMCID: PMC2919255  PMID: 20606253
SIRT1; atherosclerosis; endothelium; inflammation
9.  The role of exercise and PGC1α in inflammation and chronic disease 
Nature  2008;454(7203):463-469.
Inadequate physical activity is linked to many chronic diseases. However, the mechanisms that tie muscle activity to health are unclear. The peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α) controls several exercise-related aspects of muscle function. We propose here mechanisms by which this protein controls muscle plasticity, suppresses a broad inflammatory response and mediates the beneficial effects of exercise.
PMCID: PMC2587487  PMID: 18650917
10.  Abnormal glucose homeostasis in skeletal muscle–specific PGC-1α knockout mice reveals skeletal muscle–pancreatic β cell crosstalk 
The Journal of Clinical Investigation  2007;117(11):3463-3474.
The transcriptional coactivator PPARγ coactivator 1α (PGC-1α) is a strong activator of mitochondrial biogenesis and oxidative metabolism. While expression of PGC-1α and many of its mitochondrial target genes are decreased in the skeletal muscle of patients with type 2 diabetes, no causal relationship between decreased PGC-1α expression and abnormal glucose metabolism has been established. To address this question, we generated skeletal muscle–specific PGC-1α knockout mice (MKOs), which developed significantly impaired glucose tolerance but showed normal peripheral insulin sensitivity. Surprisingly, MKOs had expanded pancreatic β cell mass, but markedly reduced plasma insulin levels, in both fed and fasted conditions. Muscle tissue from MKOs showed increased expression of several proinflammatory genes, and these mice also had elevated levels of the circulating IL-6. We further demonstrated that IL-6 treatment of isolated mouse islets suppressed glucose-stimulated insulin secretion. These data clearly illustrate a causal role for muscle PGC-1α in maintenance of glucose homeostasis and highlight an unexpected cytokine-mediated crosstalk between skeletal muscle and pancreatic islets.
PMCID: PMC2000810  PMID: 17932564
11.  The evolution of drug-activated nuclear receptors: one ancestral gene diverged into two xenosensor genes in mammals 
Nuclear Receptor  2004;2:7.
Drugs and other xenobiotics alter gene expression of cytochromes P450 (CYP) by activating the pregnane X receptor (PXR) and constitutive androstane receptor (CAR) in mammals. In non-mammalian species, only one xenosensor gene has been found. Using chicken as a model organism, the aim of our study was to elucidate whether non-mammalian species only have one or two xenosensors like mammals.
To explore the evolutionary aspect of this divergence, we tried to identify additional xenobiotic sensing nuclear receptors in chicken using various experimental approaches. However, none of those revealed novel candidates. Ablation of chicken xenobiotic receptor (CXR) function by RNAi or dominant-negative alleles drastically reduced drug-induction in a chicken hepatoma cell line. Subsequently, we functionally and structurally characterized CXR and compared our results to PXR and CAR. Despite the high similarity in their amino acid sequence, PXR and CAR have very distinct modes of activation. Some aspects of CXR function, e.g. direct ligand activation and high promiscuity are very reminiscent of PXR. On the other hand, cellular localization studies revealed common characteristics of CXR and CAR in terms of cytoplasmic-nuclear distribution. Finally, CXR has unique properties regarding its regulation in comparison to PXR and CAR.
Our finding thus strongly suggest that CXR constitutes an ancestral gene which has evolved into PXR and CAR in mammals. Future studies should elucidate the reason for this divergence in mammalian versus non-mammalian species.
PMCID: PMC524364  PMID: 15479477

Results 1-11 (11)