PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (29)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
1.  The eSNV-detect: a computational system to identify expressed single nucleotide variants from transcriptome sequencing data 
Nucleic Acids Research  2014;42(22):e172.
Rapid development of next generation sequencing technology has enabled the identification of genomic alterations from short sequencing reads. There are a number of software pipelines available for calling single nucleotide variants from genomic DNA but, no comprehensive pipelines to identify, annotate and prioritize expressed SNVs (eSNVs) from non-directional paired-end RNA-Seq data. We have developed the eSNV-Detect, a novel computational system, which utilizes data from multiple aligners to call, even at low read depths, and rank variants from RNA-Seq. Multi-platform comparisons with the eSNV-Detect variant candidates were performed. The method was first applied to RNA-Seq from a lymphoblastoid cell-line, achieving 99.7% precision and 91.0% sensitivity in the expressed SNPs for the matching HumanOmni2.5 BeadChip data. Comparison of RNA-Seq eSNV candidates from 25 ER+ breast tumors from The Cancer Genome Atlas (TCGA) project with whole exome coding data showed 90.6–96.8% precision and 91.6–95.7% sensitivity. Contrasting single-cell mRNA-Seq variants with matching traditional multicellular RNA-Seq data for the MD-MB231 breast cancer cell-line delineated variant heterogeneity among the single-cells. Further, Sanger sequencing validation was performed for an ER+ breast tumor with paired normal adjacent tissue validating 29 out of 31 candidate eSNVs. The source code and user manuals of the eSNV-Detect pipeline for Sun Grid Engine and virtual machine are available at http://bioinformaticstools.mayo.edu/research/esnv-detect/.
doi:10.1093/nar/gku1005
PMCID: PMC4267611  PMID: 25352556
2.  Pathophysiological Roles of PPARγ in Gastrointestinal Epithelial Cells 
PPAR Research  2008;2008:148687.
Although the highest levels of PPARγ expression in the body have been reported in the gastrointestinal epithelium, little is known about the physiological functions of that receptor in the gut. Moreover, there is considerable controversy concerning the effects of thiazolidinedione PPARγ agonists on the two major diseases of the gastrointestinal track: colorectal cancer and inflammatory bowel disease. We will undertake to review both historical and recently published data with a view toward summarizing what is presently known about the roles of PPARγ in both physiological and pathological processes in the gastrointestinal epithelium.
doi:10.1155/2008/148687
PMCID: PMC2443401  PMID: 18615192
3.  The PRKCI and SOX2 Oncogenes are Co-amplified and Cooperate to Activate Hedgehog Signaling in Lung Squamous Cell Carcinoma 
Cancer cell  2014;25(2):139-151.
SUMMARY
We report that two oncogenes co-amplified on chromosome 3q26, PRKCI and SOX2, cooperate to drive a stem-like phenotype in lung squamous cell carcinoma (LSCC). PKCι phosphorylates SOX2, a master transcriptional regulator of stemness, and recruits it to the promoter of Hedgehog Acyl Transferase (HHAT), which catalyzes the rate-limiting step in Hh ligand production. PKCι-mediated SOX2 phosphorylation is required for HHAT promoter occupancy, HHAT expression, and maintenance of a stem-like phenotype. Primary LSCC tumors coordinately overexpress PKCι, SOX2, and HHAT, and require PKCι-SOX2-HHAT signaling to maintain a stem-like phenotype. Thus, PKCι and SOX2 are genetically, biochemically and functionally linked in LSCC, and together they drive tumorigenesis by establishing a cell autonomous Hh signaling axis.
doi:10.1016/j.ccr.2014.01.008
PMCID: PMC3949484  PMID: 24525231
Protein Kinase Cι; SOX2; 3q26 amplification; Hedgehog signaling; proliferation; transformed growth; LSCC tumor initiation; clonal expansion
4.  Inverse Association between Programmed Death Ligand 1 and Genes in the VEGF Pathway in Primary Clear Cell Renal Cell Carcinoma 
Cancer immunology research  2013;1(6):378-385.
Increased angiogenesis and tumor-induced immune evasion are two mechanisms by which clear cell renal cell carcinoma (ccRCC) proliferate and metastasize; however, the relationship between these pathways in human ccRCC is poorly understood. We conducted a nested case–control study using 98 archived tumor samples from patients diagnosed with primary ccRCC between 1990 and 2006, half of which were identified by immunohistochemistry (IHC) as either programmed death ligand 1 (PDL-1)–positive or PDL-1–negative. RNAs were extracted from the formalin-fixed paraffin-embedded tumor slides and the expression of the VEGFA, VEGFR1, VEGFR2, and PDL-1 genes was quantified. We assessed the presence of tumor-infiltrating lymphocytes (TIL) by IHC for CD3, and then analyzed the relationship among VEGFA, VEGFR1, VEGFR2, CD3, and PDL-1. When analyzed as a continuous variable, PDL-1 protein expression by IHC inversely correlates with the expression of the three VEGF-related genes: VEGFA (r = −0.23; P = 0.01), VEGFR1 (r = −0.34; P < 0.001), and VEGFR2 (r =−0.23; P = 0.01). When dichotomized, the PDL-1–positive cohort trended toward a lower expression of VEGFA (fold change = 0.72; P = 0.056) and VEGFR1 (fold change = 0.69; P = 0.057). In addition, there was a significant and positive relationship between the presence of TIL as assessed by IHC for CD3 and PDL-1 by IHC (r = 0.25; P = 0.015), and there was a trend toward an inverse relationship between TIL and VEGFA gene expression (r = −0.18; P = 0.089). In conclusion, this is the first demonstration of an inverse association between the angiogenesis and PDL-1 pathways in tumor samples from primary ccRCC, and this relationship may be related to the immunosuppressive effects of VEGF signaling.
doi:10.1158/2326-6066.CIR-13-0042
PMCID: PMC4322777  PMID: 24778130
5.  Deep Sequence Analysis of Non-Small Cell Lung Cancer: Integrated Analysis of Gene Expression, Alternative Splicing, and Single Nucleotide Variations in Lung Adenocarcinomas with and without Oncogenic KRAS Mutations 
KRAS mutations are highly prevalent in non-small cell lung cancer (NSCLC), and tumors harboring these mutations tend to be aggressive and resistant to chemotherapy. We used next-generation sequencing technology to identify pathways that are specifically altered in lung tumors harboring a KRAS mutation. Paired-end RNA-sequencing of 15 primary lung adenocarcinoma tumors (8 harboring mutant KRAS and 7 with wild-type KRAS) were performed. Sequences were mapped to the human genome, and genomic features, including differentially expressed genes, alternate splicing isoforms and single nucleotide variants, were determined for tumors with and without KRAS mutation using a variety of computational methods. Network analysis was carried out on genes showing differential expression (374 genes), alternate splicing (259 genes), and SNV-related changes (65 genes) in NSCLC tumors harboring a KRAS mutation. Genes exhibiting two or more connections from the lung adenocarcinoma network were used to carry out integrated pathway analysis. The most significant signaling pathways identified through this analysis were the NFκB, ERK1/2, and AKT pathways. A 27 gene mutant KRAS-specific sub network was extracted based on gene–gene connections from the integrated network, and interrogated for druggable targets. Our results confirm previous evidence that mutant KRAS tumors exhibit activated NFκB, ERK1/2, and AKT pathways and may be preferentially sensitive to target therapeutics toward these pathways. In addition, our analysis indicates novel, previously unappreciated links between mutant KRAS and the TNFR and PPARγ signaling pathways, suggesting that targeted PPARγ antagonists and TNFR inhibitors may be useful therapeutic strategies for treatment of mutant KRAS lung tumors. Our study is the first to integrate genomic features from RNA-Seq data from NSCLC and to define a first draft genomic landscape model that is unique to tumors with oncogenic KRAS mutations.
doi:10.3389/fonc.2012.00012
PMCID: PMC3356053  PMID: 22655260
transcriptome sequencing; RNA-Seq; KRAS mutation; NSCLC; bioinformatics; network analysis; data integration and computational methods
6.  Overexpression of Evi-1 Oncoprotein Represses TGF-β Signaling in Colorectal Cancer 
Molecular carcinogenesis  2011;52(4):255-264.
Human colorectal cancer (CRC) cells are resistant to the anti-proliferative effect of transforming growth factor-β (TGF-β), suggesting that disruption of TGF-β signaling plays an important role in colorectal carcinogenesis. Ecotropic virus integration site-1 (Evi-1) oncoprotein represses TGF-β signaling by interacting with Smads, but its role in CRC has not been established. The purpose of this study is to determine whether Evi-1 plays role(s) in CRCs and to characterize Evi-1 transcript(s) in CRCs. Evi-1 was overexpressed in 53% of human CRC samples, 100% of colon adenoma samples, and 100% of human colon cancer cell lines tested. Using 5′ RACE, we cloned a novel Evi-1 transcript (Evi-1e) from a human CRC tissue and found that this novel transcript was expressed at a higher level in CRC tissues than in normal tissues and was the major Evi-1 transcript in CRCs. Transient Evi-1 transfection inhibited TGF-β-induced transcriptional activity and reversed the growth inhibitory effect of TGF-β in MC-26 mouse colon cancer cells. In conclusion, we have identified overexpression of Evi-1 oncoprotein as a novel mechanism by which a subset of human CRCs may escape TGF-β regulation. We have also identified a novel Evi-1 transcript, Evi-1e, as the major Evi-1 transcript expressed in human CRCs.
doi:10.1002/mc.21852
PMCID: PMC3922648  PMID: 22161860
colorectal cancer; ecotropic virus integration site-1; transforming growth factor-β; Smad proteins; rapid amplification of cDNA ends; growth inhibition
7.  Adjuvant Therapy of Triple Negative Breast Cancer 
Patients with the triple negative subtype of breast cancer have an overall poor outcome, with earlier relapses, distinct patterns of metastases, and lack of specific targets for treatment selection. Classification of these tumors has begun to be modified by inclusion of immunohistochemistry for various markers, and gene profiling, to further characterize this subtype of breast cancer, may aid in the identification of new targeted therapies. Anthracyclines and taxanes remain the standard of care in the adjuvant setting. However, novel anti-angiogenesis, anti-tubulin, and DNA repair agents are already under evaluation in (neo) adjuvant trials. Molecular characterization is being included in trials to identify optimal adjuvant strategies. The aim of this manuscript is to review data concerning the molecular characterization of triple negative breast cancers as well as the clinical outcomes of treating patients with existing adjuvant treatments, and to highlight newer adjuvant research strategies in development.
doi:10.1007/s10549-010-0736-z
PMCID: PMC3918886  PMID: 20094772
Breast cancer; triple negative; basal-like breast cancer; adjuvant therapy
8.  Oncogenic K-ras promotes early carcinogenesis in the mouse proximal colon 
Oncogenic K-ras mutations are frequently observed in colon cancers and contribute to transformed growth. Oncogenic K-ras is detected in aberrant crypt foci (ACF), precancerous colonic lesions, demonstrating that acquisition of a K-ras mutation is an early event in colon carcinogenesis. Here, we investigate the role of oncogenic K-ras in neoplastic initiation and progression. Transgenic mice in which an oncogenic K-rasG12D allele is activated in the colonic epithelium by sporadic recombination (K-rasLA2 mice) develop spontaneous ACF that are morphologically indistinguishable from those induced by the colon carcinogen azoxymethane (AOM). Similar neoplastic changes involving the entire colon are induced in transgenic mice constitutively expressing K-rasG12D throughout the colon (LSL-K-rasG12D/Villin-Cre mice). However, the biochemistry and fate of K-ras-induced lesions differ depending upon their location within the colon in these mice. In the proximal colon, K-rasG12D induces increased expression of procarcinogenic protein kinase CβII (PKCβII), activation of the MEK/ERK signaling axis and increased epithelial cell proliferation. In contrast, in the distal colon, K-rasG12D inhibits expression of procarcinogenic PKCβII and induces apoptosis. Treatment of K-rasLA2 mice with AOM leads to neoplastic progression of small ACF to large, dysplastic microadenomas in the proximal, but not the distal colon. Thus, oncogenic K-ras functions differently in the proximal and distal colon of mice, inducing ACF capable of neoplastic progression in the proximal colon, and ACF with little or no potential for progression in the distal colon. Our data indicate that acquisition of a K-ras mutation is an initiating neoplastic event in proximal colon cancer development in mice.
doi:10.1002/ijc.23383
PMCID: PMC3908548  PMID: 18271008
K-ras; colon; carcinogenesis; dysplasia; PKCβII; ACF; progression
9.  The high affinity peroxisome proliferator-activated receptor-gamma agonist RS5444 inhibits both initiation and progression of colon tumors in azoxymethane-treated mice 
We evaluated RS5444, a thiazolidinedione high affinity PPARγ agonist, for the ability to inhibit colon carcinogenesis in azoxymethane (AOM)-treated mice. In our initial experiment, mice were treated with RS5444 during AOM treatment, and the drug was withdrawn 12 weeks after the last injection of AOM. RS5444 significantly inhibited aberrant crypt focus formation under these circumstances. Furthermore, exposure to RS5444 during the course of AOM treatment effectively blocked colon tumor formation after withdrawal of the agonist. PPARγ expression and nuclear localization were reduced in adenomas. RS5444 did not inhibit DNA synthesis in tumor cells, suggesting that PPARγ activity was impaired in adenomas. To test this hypothesis, pre-existing adenomas were treated with RS5444 for 16 weeks. We observed a slight, albeit not statistically significant, reduction in tumor incidence in RS5444-treated mice. However, histological examination revealed that tumors from RS5444-treated mice were of significantly lower grade, as evaluated by the extent of dysplasia. Furthermore, carcinoma in situ was observed in about one-third of control tumors, but was never observed in RS5444-treated tumors. We conclude that RS5444 inhibits both initiation and progression of colon tumors in the AOM model of sporadic colon carcinogenesis.
doi:10.1002/ijc.23640
PMCID: PMC3902358  PMID: 18546290
PPARγ; colon carcinogenesis; colon cancer chemoprevention; azoxymethane-induced colon tumors; nuclear receptors
11.  Gene Expression, Single Nucleotide Variant and Fusion Transcript Discovery in Archival Material from Breast Tumors 
PLoS ONE  2013;8(11):e81925.
Advantages of RNA-Seq over array based platforms are quantitative gene expression and discovery of expressed single nucleotide variants (eSNVs) and fusion transcripts from a single platform, but the sensitivity for each of these characteristics is unknown. We measured gene expression in a set of manually degraded RNAs, nine pairs of matched fresh-frozen, and FFPE RNA isolated from breast tumor with the hybridization based, NanoString nCounter (226 gene panel) and with whole transcriptome RNA-Seq using RiboZeroGold ScriptSeq V2 library preparation kits. We performed correlation analyses of gene expression between samples and across platforms. We then specifically assessed whole transcriptome expression of lincRNA and discovery of eSNVs and fusion transcripts in the FFPE RNA-Seq data. For gene expression in the manually degraded samples, we observed Pearson correlations of >0.94 and >0.80 with NanoString and ScriptSeq protocols, respectively. Gene expression data for matched fresh-frozen and FFPE samples yielded mean Pearson correlations of 0.874 and 0.783 for NanoString (226 genes) and ScriptSeq whole transcriptome protocols respectively, p<2x10-16. Specifically for lincRNAs, we observed superb Pearson correlation (0.988) between matched fresh-frozen and FFPE pairs. FFPE samples across NanoString and RNA-Seq platforms gave a mean Pearson correlation of 0.838. In FFPE libraries, we detected 53.4% of high confidence SNVs and 24% of high confidence fusion transcripts. Sensitivity of fusion transcript detection was not overcome by an increase in depth of sequencing up to 3-fold (increase from ~56 to ~159 million reads). Both NanoString and ScriptSeq RNA-Seq technologies yield reliable gene expression data for degraded and FFPE material. The high degree of correlation between NanoString and RNA-Seq platforms suggests discovery based whole transcriptome studies from FFPE material will produce reliable expression data. The RiboZeroGold ScriptSeq protocol performed particularly well for lincRNA expression from FFPE libraries, but detection of eSNV and fusion transcripts was less sensitive.
doi:10.1371/journal.pone.0081925
PMCID: PMC3838386  PMID: 24278466
12.  An Integrated Model of the Transcriptome of HER2-Positive Breast Cancer 
PLoS ONE  2013;8(11):e79298.
Our goal in these analyses was to use genomic features from a test set of primary breast tumors to build an integrated transcriptome landscape model that makes relevant hypothetical predictions about the biological and/or clinical behavior of HER2-positive breast cancer. We interrogated RNA-Seq data from benign breast lesions, ER+, triple negative, and HER2-positive tumors to identify 685 differentially expressed genes, 102 alternatively spliced genes, and 303 genes that expressed single nucleotide sequence variants (eSNVs) that were associated with the HER2-positive tumors in our survey panel. These features were integrated into a transcriptome landscape model that identified 12 highly interconnected genomic modules, each of which represents a cellular processes pathway that appears to define the genomic architecture of the HER2-positive tumors in our test set. The generality of the model was confirmed by the observation that several key pathways were enriched in HER2-positive TCGA breast tumors. The ability of this model to make relevant predictions about the biology of breast cancer cells was established by the observation that integrin signaling was linked to lapatinib sensitivity in vitro and strongly associated with risk of relapse in the NCCTG N9831 adjuvant trastuzumab clinical trial dataset. Additional modules from the HER2 transcriptome model, including ubiquitin-mediated proteolysis, TGF-beta signaling, RHO-family GTPase signaling, and M-phase progression, were linked to response to lapatinib and paclitaxel in vitro and/or risk of relapse in the N9831 dataset. These data indicate that an integrated transcriptome landscape model derived from a test set of HER2-positive breast tumors has potential for predicting outcome and for identifying novel potential therapeutic strategies for this breast cancer subtype.
doi:10.1371/journal.pone.0079298
PMCID: PMC3815156  PMID: 24223926
13.  Pharmacologic reversion of epigenetic silencing of the PRKD1 promoter blocks breast tumor cell invasion and metastasis 
Introduction
DNA methylation-induced silencing of genes encoding tumor suppressors is common in many types of cancer, but little is known about how such epigenetic silencing can contribute to tumor metastasis. The PRKD1 gene encodes protein kinase D1 (PKD1), a serine/threonine kinase that is expressed in cells of the normal mammary gland, where it maintains the epithelial phenotype by preventing epithelial-to-mesenchymal transition.
Methods
The status of PRKD1 promoter methylation was analyzed by reduced representation bisulfite deep sequencing, methylation-specific PCR (MSP-PCR) and in situ MSP-PCR in invasive and noninvasive breast cancer lines, as well as in humans in 34 cases of “normal” tissue, 22 cases of ductal carcinoma in situ, 22 cases of estrogen receptor positive, HER2-negative (ER+/HER2-) invasive lobular carcinoma, 43 cases of ER+/HER2- invasive ductal carcinoma (IDC), 93 cases of HER2+ IDC and 96 cases of triple-negative IDC. A reexpression strategy using the DNA methyltransferase inhibitor decitabine was used in vitro in MDA-MB-231 cells as well as in vivo in a tumor xenograft model and measured by RT-PCR, immunoblotting and immunohistochemistry. The effect of PKD1 reexpression on cell invasion was analyzed in vitro by transwell invasion assay. Tumor growth and metastasis were monitored in vivo using the IVIS Spectrum Pre-clinical In Vivo Imaging System.
Results
Herein we show that the gene promoter of PRKD1 is aberrantly methylated and silenced in its expression in invasive breast cancer cells and during breast tumor progression, increasing with the aggressiveness of tumors. Using an animal model, we show that reversion of PRKD1 promoter methylation with the DNA methyltransferase inhibitor decitabine restores PKD1 expression and blocks tumor spread and metastasis to the lung in a PKD1-dependent fashion.
Conclusions
Our data suggest that the status of epigenetic regulation of the PRKD1 promoter can provide valid information on the invasiveness of breast tumors and therefore could serve as an early diagnostic marker. Moreover, targeted upregulation of PKD1 expression may be used as a therapeutic approach to reverse the invasive phenotype of breast cancer cells.
doi:10.1186/bcr3460
PMCID: PMC4052945  PMID: 23971832
Decitabine; Invasion; Metastasis; PKD1; Protein kinase D1
14.  Impact of Library Preparation on Downstream Analysis and Interpretation of RNA-Seq Data: Comparison between Illumina PolyA and NuGEN Ovation Protocol 
PLoS ONE  2013;8(8):e71745.
Objectives
The sequencing by the PolyA selection is the most common approach for library preparation. With limited amount or degraded RNA, alternative protocols such as the NuGEN have been developed. However, it is not yet clear how the different library preparations affect the downstream analyses of the broad applications of RNA sequencing.
Methods and Materials
Eight human mammary epithelial cell (HMEC) lines with high quality RNA were sequenced by Illumina’s mRNA-Seq PolyA selection and NuGEN ENCORE library preparation. The following analyses and comparisons were conducted: 1) the numbers of genes captured by each protocol; 2) the impact of protocols on differentially expressed gene detection between biological replicates; 3) expressed single nucleotide variant (SNV) detection; 4) non-coding RNAs, particularly lincRNA detection; and 5) intragenic gene expression.
Results
Sequences from the NuGEN protocol had lower (75%) alignment rate than the PolyA (over 90%). The NuGEN protocol detected fewer genes (12–20% less) with a significant portion of reads mapped to non-coding regions. A large number of genes were differentially detected between the two protocols. About 17–20% of the differentially expressed genes between biological replicates were commonly detected between the two protocols. Significantly higher numbers of SNVs (5–6 times) were detected in the NuGEN samples, which were largely from intragenic and intergenic regions. The NuGEN captured fewer exons (25% less) and had higher base level coverage variance. While 6.3% of reads were mapped to intragenic regions in the PolyA samples, the percentages were much higher (20–25%) for the NuGEN samples. The NuGEN protocol did not detect more known non-coding RNAs such as lincRNAs, but targeted small and “novel” lincRNAs.
Conclusion
Different library preparations can have significant impacts on downstream analysis and interpretation of RNA-seq data. The NuGEN provides an alternative for limited or degraded RNA but it has limitations for some RNA-seq applications.
doi:10.1371/journal.pone.0071745
PMCID: PMC3747248  PMID: 23977132
15.  Multi-Platform Analysis of MicroRNA Expression Measurements in RNA from Fresh Frozen and FFPE Tissues 
PLoS ONE  2013;8(1):e52517.
MicroRNAs play a role in regulating diverse biological processes and have considerable utility as molecular markers for diagnosis and monitoring of human disease. Several technologies are available commercially for measuring microRNA expression. However, cross-platform comparisons do not necessarily correlate well, making it difficult to determine which platform most closely represents the true microRNA expression level in a tissue. To address this issue, we have analyzed RNA derived from cell lines, as well as fresh frozen and formalin-fixed paraffin embedded tissues, using Affymetrix, Agilent, and Illumina microRNA arrays, NanoString counting, and Illumina Next Generation Sequencing. We compared the performance within- and between the different platforms, and then verified these results with those of quantitative PCR data. Our results demonstrate that the within-platform reproducibility for each method is consistently high and although the gene expression profiles from each platform show unique traits, comparison of genes that were commonly detectable showed that detection of microRNA transcripts was similar across multiple platforms.
doi:10.1371/journal.pone.0052517
PMCID: PMC3561362  PMID: 23382819
16.  SAAP-RRBS: streamlined analysis and annotation pipeline for reduced representation bisulfite sequencing 
Bioinformatics  2012;28(16):2180-2181.
Summary: Reduced representation bisulfite sequencing (RRBS) is a cost-effective approach for genome-wide methylation pattern profiling. Analyzing RRBS sequencing data is challenging and specialized alignment/mapping programs are needed. Although such programs have been developed, a comprehensive solution that provides researchers with good quality and analyzable data is still lacking. To address this need, we have developed a Streamlined Analysis and Annotation Pipeline for RRBS data (SAAP-RRBS) that integrates read quality assessment/clean-up, alignment, methylation data extraction, annotation, reporting and visualization. This package facilitates a rapid transition from sequencing reads to a fully annotated CpG methylation report to biological interpretation.
Availability and implementation: SAAP-RRBS is freely available to non-commercial users at the web site http://ndc.mayo.edu/mayo/research/biostat/stand-alone-packages.cfm.
Contact: baheti.saurabh@mayo.edu or sun.zhifu@mayo.edu
Supplementary Information: Supplementary data are available at Bioinformatics online.
doi:10.1093/bioinformatics/bts337
PMCID: PMC3413387  PMID: 22689387
17.  Potential for the embryonic morphogen Nodal as a prognostic and predictive biomarker in breast cancer 
Introduction
The re-emergence of the tumour growth factor-beta (TGF-beta)-related embryonic morphogen Nodal has recently been reported in several different human cancers. In this study, we examined the expression of Nodal in a series of benign and malignant human breast tissues to determine the clinical significance of this expression and whether Nodal could represent a potential therapeutic target in breast cancer.
Methods
Tissue sections from 431 therapeutically naive patients diagnosed with benign or malignant breast disease were stained for Nodal by immunohistochemistry and analysed in a blinded manner. The degree of Nodal staining was subsequently correlated with available clinical data, such as diagnoses and disease stage. These tissue findings were further explored in breast cancer cell lines MDA-MB-231 and MDA-MB-468 treated with a Nodal blocking antibody to determine biological effects for target validation.
Results
A variable degree of Nodal staining was detected in all samples. The intensity of Nodal staining was significantly greater in undifferentiated, advanced stage, invasive breast cancer compared with benign breast disease or early stage breast cancer. Treatment of human breast cancer cells in vitro with Nodal blocking antibody significantly reduced proliferation and colony-forming ability in soft agar, concomitant with increased apoptosis.
Conclusions
These data suggest a potential role for Nodal as a biomarker for disease progression and a promising target for anti-Nodal therapy in breast cancer.
doi:10.1186/bcr3185
PMCID: PMC3446338  PMID: 22577960
18.  Meta-analysis of Oncogenic Protein Kinase Cι Signaling in Lung Adenocarcinoma 
Clinical Cancer Research  2009;15(5):1527-1533.
Purpose
Atypical protein kinase Cι (PKCι) is an oncogene in non – small cell lung cancer (NSCLC). Here, we identify four functional gene targets of PKCι in lung adenocarcinoma (LAC), the most prominent form of NSCLC.
Experimental Design
Three independent public domain gene expression data sets were interrogated to identify genes coordinately expressed with PKCι in primary LAC tumors. Results were validated by QPCR in an independent set of primary LAC tumors. RNAi-mediated knockdown of PKCι and the target genes was used to determine whether expression of the identified genes was regulated by PKCι, and whether these target genes play a role in anchorage-independent growth and invasion of LAC cells.
Results
Meta-analysis identified seven genes whose expression correlated with PKCι in primary LAC. Subsequent QPCR analysis confirmed coordinate overexpression of four genes (COPB2, ELF3, RFC4, and PLS1) in an independent set of LAC samples. RNAi-mediated knockdown showed that PKCι regulates expression of all four genes in LAC cells, and that the four PKCι target genes play an important role in the anchorage-independent growth and invasion of LAC cells. Meta-analysis of gene expression data sets from lung squamous cell, breast, colon, prostate, and pancreas carcinomas, as well as glioblastoma, revealed that a subset of PKCι target genes, particularly COPB2 and RFC4, correlate with PKCι expression in many tumor types.
Conclusion
Meta-analysis of public gene expression data are useful in identifying novel gene targets of oncogenic PKCι signaling. Our data indicate that both common and cell type – specific signaling mechanisms contribute to PKCι-dependent transformation.
doi:10.1158/1078-0432.CCR-08-2459
PMCID: PMC3260476  PMID: 19223491
19.  A novel bioinformatics pipeline for identification and characterization of fusion transcripts in breast cancer and normal cell lines 
Nucleic Acids Research  2011;39(15):e100.
SnowShoes-FTD, developed for fusion transcript detection in paired-end mRNA-Seq data, employs multiple steps of false positive filtering to nominate fusion transcripts with near 100% confidence. Unique features include: (i) identification of multiple fusion isoforms from two gene partners; (ii) prediction of genomic rearrangements; (iii) identification of exon fusion boundaries; (iv) generation of a 5′–3′ fusion spanning sequence for PCR validation; and (v) prediction of the protein sequences, including frame shift and amino acid insertions. We applied SnowShoes-FTD to identify 50 fusion candidates in 22 breast cancer and 9 non-transformed cell lines. Five additional fusion candidates with two isoforms were confirmed. In all, 30 of 55 fusion candidates had in-frame protein products. No fusion transcripts were detected in non-transformed cells. Consideration of the possible functions of a subset of predicted fusion proteins suggests several potentially important functions in transformation, including a possible new mechanism for overexpression of ERBB2 in a HER-positive cell line. The source code of SnowShoes-FTD is provided in two formats: one configured to run on the Sun Grid Engine for parallelization, and the other formatted to run on a single LINUX node. Executables in PERL are available for download from our web site: http://mayoresearch.mayo.edu/mayo/research/biostat/stand-alone-packages.cfm.
doi:10.1093/nar/gkr362
PMCID: PMC3159479  PMID: 21622959
20.  Differential Expression of MicroRNAs in Tumors from Chronically Inflamed or Genetic (APCMin/+) Models of Colon Cancer 
PLoS ONE  2011;6(4):e18501.
Background
Chronic inflammation associated with ulcerative colitis predisposes individuals to increased colon cancer risk. The aim of these studies was to identify microRNAs that are aberrantly regulated during inflammation and may participate in transformation of colonic epithelial cells in the inflammatory setting.
Methodology/Principal Findings
We have use quantitative PCR arrays to compare microRNA (miRNA) expression in tumors and control colonic epithelial cells isolated from distal colons of chronically inflamed mice and APCMin/+ mice. Rank order statistics was utilized to identify differentially regulated miRNAs in tumors that arose due to chronic inflammation and/or to germline APC mutation. Eight high priority miRNAs were identified: miR-215, miR-137, miR-708, miR-31, and miR-135b were differentially expressed in APC tumors and miR-215, miR-133a, miR-467d, miR-218, miR-708, miR-31, and miR-135b in colitis-associated tumors. Four of these (miR-215, miR-708, miR-31, and miR-135b) were common to both tumors types, and dysregulation of these miRNAs was confirmed in an independent sample set. Target prediction and pathway analysis suggests that these microRNAs, in the aggregate, regulate signaling pathways related to MAPK, PI3K, WNT, and TGF-β, all of which are known to be involved in transformation.
Conclusions/Significance
We conclude that these four miRNAs are dysregulated at some very early stage in transformation of colonic epithelial cells. This response is not dependent on the mechanism of initiation of transformation (inflammation versus germline mutation), suggesting that the miRNAs that we have identified are likely to regulate critical signaling pathways that are central to early events in transformation of colonic epithelial cells.
doi:10.1371/journal.pone.0018501
PMCID: PMC3075242  PMID: 21532750
21.  Integrated Analysis of Gene Expression, CpG Island Methylation, and Gene Copy Number in Breast Cancer Cells by Deep Sequencing 
PLoS ONE  2011;6(2):e17490.
We used deep sequencing technology to profile the transcriptome, gene copy number, and CpG island methylation status simultaneously in eight commonly used breast cell lines to develop a model for how these genomic features are integrated in estrogen receptor positive (ER+) and negative breast cancer. Total mRNA sequence, gene copy number, and genomic CpG island methylation were carried out using the Illumina Genome Analyzer. Sequences were mapped to the human genome to obtain digitized gene expression data, DNA copy number in reference to the non-tumor cell line (MCF10A), and methylation status of 21,570 CpG islands to identify differentially expressed genes that were correlated with methylation or copy number changes. These were evaluated in a dataset from 129 primary breast tumors. Gene expression in cell lines was dominated by ER-associated genes. ER+ and ER− cell lines formed two distinct, stable clusters, and 1,873 genes were differentially expressed in the two groups. Part of chromosome 8 was deleted in all ER− cells and part of chromosome 17 amplified in all ER+ cells. These loci encoded 30 genes that were overexpressed in ER+ cells; 9 of these genes were overexpressed in ER+ tumors. We identified 149 differentially expressed genes that exhibited differential methylation of one or more CpG islands within 5 kb of the 5′ end of the gene and for which mRNA abundance was inversely correlated with CpG island methylation status. In primary tumors we identified 84 genes that appear to be robust components of the methylation signature that we identified in ER+ cell lines. Our analyses reveal a global pattern of differential CpG island methylation that contributes to the transcriptome landscape of ER+ and ER− breast cancer cells and tumors. The role of gene amplification/deletion appears to more modest, although several potentially significant genes appear to be regulated by copy number aberrations.
doi:10.1371/journal.pone.0017490
PMCID: PMC3045451  PMID: 21364760
22.  TGF-β REPRESSION OF ID2 INDUCES APOPTOSIS IN GUT EPITHELIAL CELLS 
Oncogene  2009;28(8):1089-1098.
Transforming growth factor-β (TGF-β) regulates epithelial tissue homeostasis by activating processes that control cell cycle arrest, differentiation and apoptosis. Disruption of TGF-β signaling pathway often occurs in colorectal cancers. Previously, we have shown that TGF-β induces apoptosis through the transcription factor Smad3. Affymetrix oligonucleotide microarrays were used to identify TGF-β/Smad3 target genes that regulate apoptosis in rat intestinal epithelial cells (RIE-1). We found that TGF-β repressed the expression of the inhibitor of differentiation (Id) gene family. Knockdown of Id1 and Id2 gene expression induced apoptosis in RIE cells, whereas over-expression of Id2 attenuated TGF-β-induced apoptosis. TranSignal™ Protein/DNA arrays were used to identify hypoxia-inducing factor-1 (HIF-1) as a downstream target of TGF-β. HIF-1 is a bHLH protein, and over-expression of Id2 blocked HIF-1 activation by TGF-β. Furthermore, knockdown of HIF-1 blocked TGF-β-induced apoptosis. Thus, we have identified HIF-1 as a novel mediator downstream of Id2 in the pathway of TGF-β-induced apoptosis.
doi:10.1038/onc.2008.456
PMCID: PMC2943843  PMID: 19137015
Apoptosis; Affymetrix oligonucleotide microarrays; Inhibitor of differentiation; TranSignal™; Protein/DNA arrays; Hypoxia-inducing factor
23.  Prostaglandin F2α-F-prostanoid receptor regulates CXCL8 expression in endometrial adenocarcinoma cells via the calcium–calcineurin–NFAT pathway 
Biochimica et Biophysica Acta  2009;1793(12):1917-1928.
Pro-inflammatory mediators, like prostaglandin (PG) and chemokines, promote tumourigenesis by enhancing cell proliferation, migration of immune cells and recruitment of blood vessels. Recently we showed elevated expression of the chemokine (C-X-C motif) receptor 2 (CXCR2) in endometrial adenocarcinomas localized to neutrophils and neoplastic epithelial and vascular cells. Furthermore we found that PGF2α-F-prostanoid (FP) receptor regulates the expression of the CXCR2 ligand CXCL1, to promote neutrophil chemotaxis in endometrial adenocarcinomas. In the present study we identified another CXCR2 ligand, CXCL8 as a target for PGF2α-FP receptor signalling which enhances epithelial cell proliferation in endometrial adenocarcinoma cells in vitro and in nude mice in vivo. We found that PGF2α-FP receptor interaction induces CXCL8 expression in endometrial adenocarcinoma cells via the protein kinase C–calcium–calcineurin–NFAT signaling pathway. Promoter analysis revealed that CXCL8 transcriptional activation by PGF2α signaling is mediated by cooperative interactions between the AP1 and NFAT binding sites. Furthermore, PGF2α via the FP receptor induced the expression of the regulator of calcineurin 1 isoform 4 (RCAN1-4) via the calcineurin/NFAT pathway in a reciprocal manner to CXCL8. Using an adenovirus to overexpress RCAN1-4, we found that RCAN1-4 is a negative regulator of CXCL8 expression in endometrial adenocarcinoma cells. Taken together our data have elucidated the molecular and cellular mechanism whereby PGF2α regulates CXCL8 expression via the FP receptor in endometrial adenocarcinomas and have highlighted RCAN1-4 as a negative regulator of CXCL8 expression which may be exploited therapeutically to inhibit CXCL8-mediated tumour development.
doi:10.1016/j.bbamcr.2009.09.018
PMCID: PMC2806519  PMID: 19819266
PGF2α; FP receptor; Chemokine; Calcineurin; Prostaglandin; CXCL8
24.  3' tag digital gene expression profiling of human brain and universal reference RNA using Illumina Genome Analyzer 
BMC Genomics  2009;10:531.
Background
Massive parallel sequencing has the potential to replace microarrays as the method for transcriptome profiling. Currently there are two protocols: full-length RNA sequencing (RNA-SEQ) and 3'-tag digital gene expression (DGE). In this preliminary effort, we evaluated the 3' DGE approach using two reference RNA samples from the MicroArray Quality Control Consortium (MAQC).
Results
Using Brain RNA sample from multiple runs, we demonstrated that the transcript profiles from 3' DGE were highly reproducible between technical and biological replicates from libraries constructed by the same lab and even by different labs, and between two generations of Illumina's Genome Analyzers. Approximately 65% of all sequence reads mapped to mitochondrial genes, ribosomal RNAs, and canonical transcripts. The expression profiles of brain RNA and universal human reference RNA were compared which demonstrated that DGE was also highly quantitative with excellent correlation of differential expression with quantitative real-time PCR. Furthermore, one lane of 3' DGE sequencing, using the current sequencing chemistry and image processing software, had wider dynamic range for transcriptome profiling and was able to detect lower expressed genes which are normally below the detection threshold of microarrays.
Conclusion
3' tag DGE profiling with massive parallel sequencing achieved high sensitivity and reproducibility for transcriptome profiling. Although it lacks the ability of detecting alternative splicing events compared to RNA-SEQ, it is much more affordable and clearly out-performed microarrays (Affymetrix) in detecting lower abundant transcripts.
doi:10.1186/1471-2164-10-531
PMCID: PMC2781828  PMID: 19917133
25.  Atypical Protein Kinase Cι Expression and Aurothiomalate Sensitivity in Human Lung Cancer Cells 
Cancer research  2008;68(14):5888-5895.
The anti-rheumatoid agent aurothiomalate (ATM) is a potent inhibitor of oncogenic PKCι ATM inhibits non-small lung cancer (NSCLC) growth by binding PKCι and blocking activation of a PKCι-Par6-Rac1-Pak-Mek 1,2-Erk 1,2 signaling pathway. Here, we assessed the growth inhibitory activity of ATM in a panel of human cell lines representing major lung cancer subtypes. ATM inhibited anchorage-independent growth in all lines tested with IC50s ranging from ~300 nM – >100 µM. ATM sensitivity correlates positively with expression of PKCι and Par6, but not with the PKCι binding protein p62, or the proposed targets of ATM in rheumatoid arthritis (RA), thioredoxin reductase 1 or 2 (TrxR1 and TrxR2). PKCι expression profiling revealed that a significant subset of primary NSCLC tumors express PKCι at or above the level associated with ATM sensitivity. ATM sensitivity is not associated with general sensitivity to the cytotoxic agents cis-platin, placitaxel and gemcitabine. ATM inhibits tumorigenicity of both sensitive and insensitive lung cell tumors in vivo at plasma drug concentrations achieved in RA patients undergoing ATM therapy. ATM inhibits Mek/Erk signaling and decreases proliferative index without effecting tumor apoptosis or vascularization in vivo. We conclude that ATM exhibits potent anti-tumor activity against major lung cancer subtypes, particularly tumor cells that express high levels of the ATM target PKCι and Par6. Our results indicate that PKCι expression profiling will be useful in identifying lung cancer patients most likely to respond to ATM therapy in an ongoing clinical trial.
doi:10.1158/0008-5472.CAN-08-0438
PMCID: PMC2662432  PMID: 18632643
mechanism-based therapy; anchorage-independent growth; tumorigenicity; small cell lung cancer; non-small cell lung cancer

Results 1-25 (29)