Search tips
Search criteria

Results 1-25 (34)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  DNA Extracted From Saliva for Methylation Studies of Psychiatric Traits: Evidence Tissue Specificity and Relatedness to Brain 
DNA methylation has become increasingly recognized in the etiology of psychiatric disorders. Because brain tissue is not accessible in living humans, epigenetic studies are most often conducted in blood. Saliva is often collected for genotyping studies but is rarely used to examine DNA methylation because the proportion of epithelial cells and leukocytes varies extensively between individuals. The goal of this study was to evaluate whether saliva DNA is informative for studies of psychiatric disorders. DNA methylation (HumanMethylation450 BeadChip) was assessed in saliva and blood samples from 64 adult African Americans. Analyses were conducted using linear regression adjusted for appropriate covariates, including estimated cellular proportions. DNA methylation from brain tissues (cerebellum, frontal cortex, entorhinal cortex, and superior temporal gyrus) was obtained from a publically available dataset. Saliva and blood methylation was clearly distinguishable though there was positive correlation overall. There was little correlation in CpG sites within relevant candidate genes. Correlated CpG sites were more likely to occur in areas of low CpG density (i.e., CpG shores and open seas). There was more variability in CpG sites from saliva than blood, which may reflect its heterogeneity. Finally, DNA methylation in saliva appeared more similar to patterns from each of the brain regions examined overall than methylation in blood. Thus, this study provides a framework for using DNA methylation from saliva and suggests that DNA methylation of saliva may offer distinct opportunities for epidemiological and longitudinal studies of psychiatric traits.
PMCID: PMC4610814  PMID: 25355443
epigenetic; biomarker; oragene; EWAS; Human-Methylation450
2.  Association between childhood maltreatment and adult emotional dysregulation in a low-income, urban, African American sample: Moderation by oxytocin receptor gene 
Development and psychopathology  2011;23(2):439-452.
The ability to effectively regulate emotions and a secure attachment style are critical for maintaining mental health across the life span. The experience of childhood maltreatment interferes with normal development of emotional regulation and dramatically increases risk for a wide range of psychiatric disorders in adulthood. The central nervous system oxytocin systems are critically involved in mediating social attachment and buffering psychophysiological responses to stress. We therefore investigated the impact of childhood maltreatment and an oxytocin receptor (OXTR) single nucleotide polymorphism (rs53576) and their interaction on emotional dysregulation and attachment style in adulthood in a sample of low-income, African American men and women recruited from primary care clinics of an urban, public hospital. Consistent with prior research, we found that the severity of childhood maltreatment was associated with increased levels of emotional dysregulation in adulthood. Childhood maltreatment was also positively associated with ratings of disorganized/unresolved adult attachment style and negatively associated with ratings of secure adult attachment style. There was no direct association between rs53576 and emotional dysregulation or ratings of adult attachment style. However, there were significant interactions between rs53576 and childhood maltreatment in predicting level of adult emotional dysregulation and attachment style. Specifically, G/G genotype carriers were at risk for increased emotional dysregulation when exposed to three or more categories of childhood abuse. In addition, G/G genotype carriers exhibited enhanced disorganized adult attachment style when exposed to severe childhood abuse compared to A/A and A/G carriers. Our findings suggest that A allele carriers of OXTR rs53576 are resilient against the effects of severe childhood adversity, by protection against emotional dysregulation and disorganized attachment.
PMCID: PMC4363139  PMID: 23786688
3.  A LIM-9 (FHL) / SCPL-1 (SCP) Complex Interacts with the C-terminal Protein Kinase Regions of UNC-89 (Obscurin) in C. elegans Muscle 
Journal of molecular biology  2009;386(4):976-988.
The C. elegans gene unc-89 encodes a set of mostly giant polypeptides (up to 900 kDa) that contain multiple Ig and Fn3, a triplet of SH3-DH-PH, and two protein kinase domains. The loss of function mutant phenotype and localization of antibodies to UNC-89 proteins, indicate that the function of UNC-89 is to help organize sarcomeric A-bands, especially M-lines. Recently, we reported that each of the protein kinase domains interact with SCPL-1, which contains a CTD type protein phosphatase domain. Here, we report that SCPL-1 interacts with LIM-9 (FHL), a protein that we first discovered as an interactor of UNC-97 (PINCH) and UNC-96, components of an M-line costamere in nematode muscle. We also show that LIM-9 can interact with UNC-89 through its first kinase domain and a portion of unique sequence lying between the two kinase domains. All the interactions were confirmed by biochemical methods. A yeast three-hybrid assay demonstrates a ternary complex between the two protein kinase regions and SCPL-1. Evidence that the UNC-89/SCPL-1 interaction occurs in vivo was provided by showing that overexpression of SCPL-1 results in disorganization of UNC-89 at M-lines. We suggest two structural models for the interactions of SCPL-1 and LIM-9 with UNC-89 at the M-line.
PMCID: PMC4321865  PMID: 19244614
C. elegans; obscurin; FHL; CTD phosphatase; muscle
4.  Early Intervention Following Trauma May Mitigate Genetic Risk for PTSD in Civilians: A Pilot Prospective Emergency Department Study 
The Journal of clinical psychiatry  2014;75(12):1380-1387.
Civilian posttraumatic stress disorder (PTSD) and combat PTSD are major public health concerns. Although a number of psychosocial risk factors have been identified related to PTSD risk, there are no accepted, robust biological predictors that identify who will develop PTSD or who will respond to early intervention following trauma. We wished to examine whether genetic risk for PTSD can be mitigated with an early intervention.
65 emergency department patients recruited in 2009–2010 at Grady Memorial Hospital in Atlanta, Georgia, who met criterion A of DSM-IV PTSD received either 3 sessions of an exposure intervention, beginning in the emergency department shortly after trauma exposure or assessment only. PTSD symptoms were assessed 4 and 12 weeks after trauma exposure. A composite additive risk score was derived from polymorphisms in 10 previously identified genes associated with stress-response (ADCYAP1R1, COMT, CRHR1, DBH, DRD2, FAAH, FKBP5, NPY, NTRK2, and PCLO), and gene x treatment effects were examined. The intervention included 3 sessions of imaginal exposure to the trauma memory and additional exposure homework. The primary outcome measure was the PTSD Symptom Scale-Interview Version or DSM-IV–based PTSD diagnosis in patients related to genotype and treatment group.
A gene x intervention x time effect was detected for individual polymorphisms, in particular the PACAP receptor, ADCYAP1R1, as well as with a combined genotype risk score created from independent SNP markers. Subjects who did not receive treatment had higher symptoms than those who received intervention. Furthermore, subjects with the “risk” genotypes who did not receive intervention had higher PTSD symptoms compared to those with the “low-risk” or “resilience” genotypes or those who received intervention. Additionally, PTSD symptoms correlated with level of genetic risk at week 12 (P < .005) in the assessment-only group, but with no relationship in the intervention group, even after controlling for age, sex, race, education, income, and childhood trauma. Using logistic regression, the number of risk alleles was significantly associated with likelihood of PTSD diagnosis at week 12 (P < .05).
This pilot prospective study suggests that combined genetic variants may serve to predict those most at risk for developing PTSD following trauma. A psychotherapeutic intervention initiated in the emergency department within hours of the trauma may mitigate this risk. The role of genetic predictors of risk and resilience should be further evaluated in larger, prospective intervention and prevention trials.
Trial Registration identifier: NCT00895518
PMCID: PMC4293026  PMID: 25188543
5.  Correspondence 
Biological psychiatry  2014;76(4):e3-e4.
Follow-up and Extension of a Prior Genome-wide Association Study of Posttraumatic Stress Disorder: Gene × Environment Associations and Structural Magnetic Resonance Imaging in a Highly Traumatized African-American Civilian Population
PMCID: PMC4285665  PMID: 24576688
6.  Allele-specific FKBP5 DNA demethylation mediates gene–childhood trauma interactions 
Nature neuroscience  2012;16(1):33-41.
Although the fact that genetic predisposition and environmental exposures interact to shape development and function of the human brain and, ultimately, the risk of psychiatric disorders has drawn wide interest, the corresponding molecular mechanisms have not yet been elucidated. We found that a functional polymorphism altering chromatin interaction between the transcription start site and long-range enhancers in the FK506 binding protein 5 (FKBP5) gene, an important regulator of the stress hormone system, increased the risk of developing stress-related psychiatric disorders in adulthood by allele-specific, childhood trauma–dependent DNA demethylation in functional glucocorticoid response elements of FKBP5. This demethylation was linked to increased stress-dependent gene transcription followed by a long-term dysregulation of the stress hormone system and a global effect on the function of immune cells and brain areas associated with stress regulation. This identification of molecular mechanisms of genotype-directed long-term environmental reactivity will be useful for designing more effective treatment strategies for stress-related disorders.
PMCID: PMC4136922  PMID: 23201972
7.  Accounting for Population Stratification in DNA Methylation Studies 
Genetic epidemiology  2014;38(3):231-241.
DNA methylation is an important epigenetic mechanism that has been linked to complex disease and is of great interest to researchers as a potential link between genome, environment, and disease. As the scale of DNA methylation association studies approaches that of genome-wide association studies (GWAS), issues such as population stratification will need to be addressed. It is well-documented that failure to adjust for population stratification can lead to false positives in genetic association studies, but population stratification is often unaccounted for in DNA methylation studies. Here, we propose several approaches to correct for population stratification using principal components from different subsets of genome-wide methylation data. We first illustrate the potential for confounding due to population stratification by demonstrating widespread associations between DNA methylation and race in 388 individuals (365 African American and 23 Caucasian). We subsequently evaluate the performance of our principal-components approaches and other methods in adjusting for confounding due to population stratification. Our simulations show that 1) all of the methods considered are effective at removing inflation due to population stratification, and 2) maximum power can be obtained with SNP-based principal components, followed by methylation-based principal components, which out-perform both surrogate variable analysis and genomic control. Among our different approaches to computing methylation-based principal components, we find that principal components based on CpG sites chosen for their potential to proxy nearby SNPs can provide a powerful and computationally efficient approach to adjustment for population stratification in DNA methylation studies when genome-wide SNP data are unavailable.
PMCID: PMC4090102  PMID: 24478250
Depression and anxiety  2012;30(3):251-258.
A growing literature indicates that genetic variation, in combination with adverse early life experiences, shapes risk for later mental illness. Recent work also suggests that molecular variation at the ADCYAP1R1 locus is associated with posttraumatic stress disorder (PTSD) in women. We sought to test whether childhood maltreatment (CM) interacts with ADCYAP1R1 geno-type to predict PTSD in women.
Data were obtained from 495 adult female participants from the Detroit Neighborhood Health Study. Genotyping of rs2267735, an ADCYAP1R1 variant, was conducted via TaqMan assay. PTSD, depression, and CM exposure were assessed via structured interviews. Main and interacting effects of ADCYAP1R1 and CM levels on past month PTSD and post-traumatic stress (PTS) severity were examined using logistic regression and a general linear model, respectively. As a secondary analysis, we also assessed main and interacting effects of ADCYAP1R1 and CM variation on risk of past-month depression diagnosis and symptom severity.
No significant main effects were observed for ADCYAP1R1 genotype on either PTSD/PTS severity. In contrast, a significant ADCYAP1R1 × CM interaction was observed for both past month PTSD and PTS severity, with carriers of the “C” allele showing enhanced risk for these outcomes among women exposed to CM. No significant main or interaction effects were observed for past month depression/depression severity.
Genetic variation at the ADCYAP1R1 locus interacts with CM to shape risk of later PTSD, but not depression, among women. The molecular mechanisms contributing to this interaction require further investigation.
PMCID: PMC4081452  PMID: 23280952
PTSD; depression; childhood maltreatment; candidate gene; replication; gene-environment interaction
9.  FKBP5 and Attention Bias for Threat 
JAMA psychiatry (Chicago, Ill.)  2013;70(4):392-400.
The FKBP5 gene product regulates glucocorticoid receptor (GR) sensitivity and hypothalamic-pituitary-adrenal axis functioning and has been associated with many stress-related psychiatric disorders. The study of intermediate phenotypes, such as emotion-processing biases and their neural substrates, provides a way to clarify the mechanisms by which FKBP5 dysregulation mediates risk for psychiatric disorders.
To examine whether allelic variations for a putatively functional single-nucleotide polymorphism associated with FKBP5 gene regulation (rs1360780) would relate differentially to attention bias for threat. this was measured through behavioral response on a dot probe task and hippocampal activation during task performance. Morphologic substrates of differential hippocampal response were also measured.
Cross-sectional study conducted from 2010 to 2012 examining associations between genotype, behavioral response, and neural response (using functional magnetic resonance imaging [fMRI]) on the dot probe; voxel-based morphometry and global and local shape analyses were used to measure structural differences in hippocampi between genotype groups.
Participants were recruited from primary care clinics of a publicly funded hospital in Atlanta, Georgia.
An African American cohort of adults (N=103) was separated into 2 groups by genotype: one genotype group included carriers of the rs1360780 T allele, which has been associated with increased risk for posttraumatic stress disorder and affective disorders; the other group did not carry this allele. Behavioral data included both sexes (N=103); the MRI cohort (n=36) included only women.
Main Outcome Measures
Behavioral and fMRI (blood oxygen level–dependent) response, voxel-based morphometry, and shape analyses.
Carriers of the rs1360780 T allele showed an attention bias toward threat compared with individuals with-out this allele (F1,90=5.19, P=.02). Carriers of this allele demonstrated corresponding increases in hippocampal activation and differences in morphology; global and local shape analyses revealed alterations in hippocampal shape for TT/TC compared with CC genotype groups.
Genetic variants of FKBP5 may be associated with risk for stress-related psychiatric disorders via differential effects on hippocampal structure and function, resulting in altered attention response to perceived threat.
PMCID: PMC3732315  PMID: 23407841
10.  ADCYAP1R1 Genotype Associates With Post-Traumatic Stress Symptoms in Highly Traumatized African-American Females 
Pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptor (PAC1) play a critical role in biological processes that mediate stress response and have been implicated in psychological outcome following trauma. Our previous work [Ressler et al. (2011); Nature 470:492–497] demonstrated that a variant, rs2267735, in the gene encoding PAC1 (ADCYAP1R1) is associated with post-traumatic stress disorder (PTSD) in a primarily African-American cohort of highly traumatized females. We sought to extend and replicate our previous finding in a similarly trauma-exposed, replicate sample of 1,160 African-American adult male and female patients. Self-reported psychiatric measures were collected, and DNA was obtained for genetic analysis. Using linear regression models to test for association with PTSD symptom severity under an additive (allelic) model, we found a genotype × trauma interaction in females (P< 0.001), but not males (P> 0.1); however, there was no main effect of genotype as in our previous study. The observed interaction suggests a genetic association that increases with the degree of trauma exposure in females only. This interaction remained significant in females, but not males, after controlling for age (P< 0.001), income (P< 0.01), past substance abuse (P< 0.001), depression severity (P= 0.02), or child abuse (P< 0.0005), and all five combined (P= 0.01). No significant effects of genotype (or interactions) were found when modeling depression severity when controlling for comorbid PTSD symptom severity (P> 0.1), demonstrating the relative specificity of this variant for PTSD symptoms. A meta-analysis with the previously reported African-American samples revealed a strong association between PTSD symptom severity and the interaction between trauma and genotype in females (N = 1424, P< 0.0001).
PMCID: PMC3738001  PMID: 23505260
PACAP; PAC1R; ADCYAP1R1; gene; PTSD; gene × environment; sex differences; anxiety
11.  Sex Dependent Influence of a Functional Polymorphism in Steroid 5-α-Reductase Type 2 (SRD5A2) on Post-Traumatic Stress Symptoms 
A non-synonymous, single nucleotide polymorphism (SNP) in the gene coding for steroid 5-α-reductase type 2 (SRD5A2) is associated with reduced conversion of testosterone to dihydrotestosterone (DHT). Because SRD5A2 participates in the regulation of testosterone and cortisol metabolism, hormones shown to be dysregulated in patients with PTSD, we examined whether the V89L variant (rs523349) influences risk for post-traumatic stress disorder (PTSD). Study participants (N = 1,443) were traumatized African-American patients of low socioeconomic status with high rates of lifetime trauma exposure recruited from the primary care clinics of a large, urban hospital. PTSD symptoms were measured with the post-traumatic stress symptom scale (PSS). Subjects were genotyped for the V89L variant (rs523349) of SRD5A2. We initially found a significant sex-dependent effect of genotype in male but not female subjects on symptoms. Associations with PTSD symptoms were confirmed using a separate internal replication sample with identical methods of data analysis, followed by pooled analysis of the combined samples (N = 1,443, sex × genotype interaction P < 0.002; males: n = 536, P < 0.001). These data support the hypothesis that functional variation within SRD5A2 influences, in a sex-specific way, the severity of post-traumatic stress symptoms and risk for diagnosis of PTSD.
PMCID: PMC3770127  PMID: 23505265
trauma; African-American; genetic; testosterone; cortisol; male; civilian; human; PTSD
12.  Methylation quantitative trait loci (meQTLs) are consistently detected across ancestry, developmental stage, and tissue type 
BMC Genomics  2014;15:145.
Individual genotypes at specific loci can result in different patterns of DNA methylation. These methylation quantitative trait loci (meQTLs) influence methylation across extended genomic regions and may underlie direct SNP associations or gene-environment interactions. We hypothesized that the detection of meQTLs varies with ancestral population, developmental stage, and tissue type. We explored this by analyzing seven datasets that varied by ancestry (African American vs. Caucasian), developmental stage (neonate vs. adult), and tissue type (blood vs. four regions of postmortem brain) with genome-wide DNA methylation and SNP data. We tested for meQTLs by constructing linear regression models of methylation levels at each CpG site on SNP genotypes within 50 kb under an additive model controlling for multiple tests.
Most meQTLs mapped to intronic regions, although a limited number appeared to occur in synonymous or nonsynonymous coding SNPs. We saw significant overlap of meQTLs between ancestral groups, developmental stages, and tissue types, with the highest rates of overlap within the four brain regions. Compared with a random group of SNPs with comparable frequencies, meQTLs were more likely to be 1) represented among the most associated SNPs in the WTCCC bipolar disorder results and 2) located in microRNA binding sites.
These data give us insight into how SNPs impact gene regulation and support the notion that peripheral blood may be a reliable correlate of physiological processes in other tissues.
PMCID: PMC4028873  PMID: 24555763
DNA methylation; meQTL; mQTL; Developmental stage; Ancestry; Race; Gene regulation; Inter-individual variation; Biomarker; Brain
13.  Family environment and adult resilience: contributions of positive parenting and the oxytocin receptor gene 
European Journal of Psychotraumatology  2013;4:10.3402/ejpt.v4i0.21659.
Abundant research shows that childhood adversity increases the risk for adult psychopathology while research on influences of positive family environment on risk for psychopathology is limited. Similarly, a growing body of research examines genetic and gene by environment predictors of psychopathology, yet such research on predictors of resilience is sparse.
We examined the role of positive factors in childhood family environment (CFE) and the OXTR rs53576 genotype in predicting levels of adult resilient coping and positive affect. We also examined whether the relationship between positive factors in the CFEs and adult resilient coping and positive affect varied across OXTR rs53576 genotype.
We gathered self-report data on childhood environment, trauma history, and adult resilience and positive affect in a sample of 971 African American adults.
We found that positive CFE was positively associated with higher levels of resilient coping and positive affect in adulthood after controlling for childhood maltreatment, other trauma, and symptoms of posttraumatic stress disorder. We did not find a direct effect of OXTR 53576 on a combined resilient coping/positive-affect-dependent variable, but we did find an interaction of OXTR rs53576 with family environment.
Our data suggest that even in the face of adversity, positive aspects of the family environment may contribute to resilience. These results highlight the importance of considering protective developmental experiences and the interaction of such experiences with genetic variants in risk and resilience research.
PMCID: PMC3778209  PMID: 24058725
Childhood maltreatment; abuse; family environment; resilience; positive affect; Connor–Davidson Resilience Scale (CD-RISC); oxytocin; OXTR; rs53576
14.  Inhibition of fear is differentially associated with cycling estrogen levels in women 
Although the prevalence of posttraumatic stress disorder (PTSD) is twice as high in women as it is in men, the role of estrogen in the risk for PTSD is not well understood. Deficits in fear inhibition and impaired safety signal learning may be biomarkers for PTSD. We examined menstrual cycle phase and serum estradiol levels in naturally cycling women while they were undergoing a novel conditioned inhibition procedure that measured their ability to discriminate between cues representing danger versus safety and to inhibit fear in the presence of safety cues.
Sample 1 included healthy participants in whom we compared inhibition of fear-potentiated startle during the follicular (lower estrogen) and luteal (higher estrogen) phases of the menstrual cycle. We used the same paradigm in a traumatized clinical population (sample 2) in whom we compared low versus high estradiol levels.
In both samples, we found that lower estrogen in cycling women was associated with impaired fear inhibition.
In the clinical sample, the low estradiol group was on average older than the high estradiol group owing to the random recruitment approach; we did not exclude participants based on hormonal status or menopause.
Our results suggest that the lower estrogen state during normal menstrual cycling may contribute to risk for anxiety disorders through dysregulated fear responses.
PMCID: PMC3756118  PMID: 23611176
15.  A C. elegans homolog of Huntingtin-Associated Protein 1 is Expressed in Chemosensory Neurons and in a Number of Other Somatic Cell Types 
Huntingtin Associated Protein 1 (HAP1) is a binding partner for huntingtin, the protein responsible for Huntington’s Disease. In mammals, HAP1 is mostly found in brain where it is expressed in neurons. Although several functions have been proposed for HAP1, its role has not yet been clearly established. Here we report on the identification of a HAP1 C.elegans homolog called T27A3.1. T27A3.1 shows conservation with rat and human HAP1 as well as with Milton, a Drosophila HAP1 homolog. To determine the cellular expression of T27A3.1 (multiple isoforms; a-e), we generated several transgenic worm lines expressing a fluorescent reporter protein (GFP and DsRed2) or full length T27A3.1a/c isoforms fused to GFP under the control of the promoter for T27A3.1. We have found that T27A3.1 is expressed in many cell types including a subset of chemosensory neurons in the head and tail. These include the amphid chemosensory neurons ASKL and R, ASIL and R, ADFL and ASEL; the phasmid neurons PHBL and R; and the CAN neurons which are required for worm survival. Furthermore, we show that the subcellular localization of T27A3.1a/c resemble that of mammalian HAP1 and that T27A3.1a/c localize to stigmoid body like structures.
PMCID: PMC3748950  PMID: 18592415
Huntington; localization; amphid; phasmid; stigmoid body
16.  Acute and Posttraumatic Stress Symptoms in a Prospective Gene × Environment Study of a University Campus Shooting 
Archives of general psychiatry  2011;69(1):89-97.
The serotonin transporter (SLC6A4) has been associated with several stress-related syndromes including posttraumatic stress disorder (PTSD). The ability to detect meaningful associations is largely dependent on reliable measures of preexisting trauma.
To study the association of genetic variants within SLC6A4 with acute and posttraumatic stress symptoms in a civilian cohort with known levels of preexisting trauma and PTSD symptoms collected prior to a shared index traumatic event.
Ongoing longitudinal study.
On February 14, 2008, a lone gunman shot multiple people on the campus of Northern Illinois University in DeKalb, Illinois, killing 5 and wounding 21. As part of an ongoing longitudinal study on that campus, a cohort of female undergraduate students, interviewed prior to the shooting, completed follow-up trauma-related measures including PTSD symptom severity (follow-up survey was launched 17 days postshooting; n=691). To obtain DNA, salivary samples were collected from a subset of the original study population based on willingness to participate (n=276).
Two hundred four undergraduate women.
Main Outcome Measures
SLC6A4 polymorphisms STin2, 5-HTTLPR, and rs25531 were genotyped in 235 individuals.
We found that although the STin2 variant and 5-HTTLPR alone did not associate with increased PTSD symptoms, rs25531 and the 5-HTTLPRmultimarker genotype (combined 5-HTTLPR and rs25531) were associated with significantly increased acute stress disorder symptoms at 2 to 4 weeks postshooting (n = 161; P<.05). This association remained significant when controlling for race and for level of shooting exposure (n = 123; P<.007). The association was most robust with the 5-HTTLPR multimarker genotype and avoidance symptoms (P=.003).
These data suggest that differential function of the serotonin transporter may mediate differential response to a severe trauma. When examined in a relatively homogenous sample with shared trauma and known prior levels of child and adult trauma, the 5-HTTLPR multimarker genotype may serve as a useful predictor of risk for PTSD-related symptoms in the weeks and months following the trauma.
PMCID: PMC3738299  PMID: 21893641
17.  Using Polymorphisms in FKBP5 to Define Biologically Distinct Subtypes of Posttraumatic Stress Disorder 
Archives of general psychiatry  2011;68(9):901-910.
Polymorphisms in the gene encoding the glucocorticoid receptor (GR) regulating co-chaperone FKBP5 have been shown to alter GR sensitivity and are associated with an increased risk to develop posttraumatic stress disorder (PTSD).
To investigate interactions of the FKBP5 single-nucleotide polymorphism rs9296158 and PTSD symptoms on baseline cortisol level, low-dose dexamethasone suppression, and whole-blood gene expression.
Association of FKBP5 genotypes and PTSD symptoms with endocrine measures and genome-wide expression profiles.
Waiting rooms of general medical and gynecological clinics of an urban hospital at Emory University.
The 211 participants were primarily African American (90.05%) and of low socioeconomic status and had high rates of trauma and PTSD.
Main Outcome Measures
Baseline and post–dexamethasone suppression cortisol measures and gene expression levels.
In our endocrine study, we found that only risk allele A carriers of rs9296158 showed GR supersensitivity with PTSD; in contrast, baseline cortisol levels were decreased in PTSD only in patients with the GG genotype. Expression of 183 transcripts was significantly correlated with PTSD symptoms after multiple testing corrections. When adding FKBP5 genotype and its interaction with PTSD symptoms, expression levels of an additional 32 genes were significantly regulated by the interaction term. Within these 32 genes, previously reported PTSD candidates were identified, including FKBP5 and the IL18 and STAT pathways. Significant overrepresentation of steroid hormone transcription factor binding sites within these 32 transcripts was observed, highlighting the fact that the earlier-described genotype and PTSD-dependent differences in GR sensitivity could drive the observed gene expression pattern. Results were validated by reverse transcriptase–polymerase chain reaction and replicated in an independent sample (N=98).
These data suggest that the inheritance of GR sensitivity–moderating FKBP5 polymorphisms can determine specific types of hypothalamic-pituitary-adrenal axis dysfunction within PTSD, which are also reflected in gene-expression changes of a subset of GR-responsive genes. Thus, these findings indicate that functional variants in FKBP5 are associated with biologically distinct subtypes of PTSD.
PMCID: PMC3686481  PMID: 21536970
18.  Estrogen Levels Are Associated with Extinction Deficits in Women with Posttraumatic Stress Disorder 
Biological psychiatry  2012;72(1):19-24.
Women are twice as likely to develop posttraumatic stress disorder (PTSD) than men. As shown in our previous work, the inability to suppress fear responses in safe conditions may be a biomarker for PTSD. Low estrogen in naturally cycling women is associated with deficits in fear extinction. On the basis of these findings, we have now examined the influence of estrogen levels on fear extinction in women with and without PTSD.
We measured fear-potentiated startle during fear conditioning and extinction in women. The study sample (N = 81) was recruited from an urban, highly traumatized civilian population at Grady Memorial Hospital in Atlanta, Georgia. We assayed serum estrogen levels and used a median split to divide the sample into high and low estradiol (E2) groups. Seventeen of 41 women (41.5%) in the low E2 group and 15 of 40 women (37.5%) met criteria for PTSD in the high E2 group.
The results showed that all groups had equivalent levels of fear conditioning. However, we found significant interaction effects between high versus low E2 groups and PTSD diagnosis [F(1,71) = 4.55, p < .05] on extinction. Among women with low estrogen levels, fear-potentiated startle was higher during extinction in the PTSD group compared with traumatized control women [F(1,38) = 5.04, p < .05]. This effect was absent in the High E2 group.
This study suggests that low estrogen may be a vulnerability factor for development of PTSD in women with trauma histories. Research on the role of estrogen in fear regulation may provide insight into novel treatment strategies for PTSD.
PMCID: PMC3675159  PMID: 22502987
Anxiety disorders; estrogen; fear extinction; fear-potentiated startle; PTSD; trauma
19.  Differential Genetic and Epigenetic Regulation of catechol-O-methyltransferase is Associated with Impaired Fear Inhibition in Posttraumatic Stress Disorder 
The catechol-O-methyltransferase (COMT) enzyme is critical for the catabolic regulation of synaptic dopamine, resulting in altered cortical functioning. The COMT Val158Met polymorphism has been implicated in human mental illness, with Met/Met homozygotes associated with increased susceptibility to posttraumatic stress disorder (PTSD). Our primary objective was to examine the intermediate phenotype of fear inhibition in PTSD stratified by COMT genotype (Met/Met, Val/Met, and Val/Val) and differential gene regulation via methylation status at CpG sites in the COMT promoter region. More specifically, we examined the potential interaction of COMT genotype and PTSD diagnosis on fear-potentiated startle during fear conditioning and extinction and COMT DNA methylation levels (as determined using genomic DNA isolated from whole blood). Participants were recruited from medical and gynecological clinics of an urban hospital in Atlanta, GA, USA. We found that individuals with the Met/Met genotype demonstrated higher fear-potentiated startle to the CS− (safety signal) and during extinction of the CS+ (danger signal) compared to Val/Met and Val/Val genotypes. The PTSD+ Met/Met genotype group had the greatest impairment in fear inhibition to the CS− (p = 0.006), compared to Val carriers. In addition, the Met/Met genotype was associated with DNA methylation at four CpG sites, two of which were associated with impaired fear inhibition to the safety signal. These results suggest that multiple differential mechanisms for regulating COMT function – at the level of protein structure via the Val158Met genotype and at the level of gene regulation via differential methylation – are associated with impaired fear inhibition in PTSD.
PMCID: PMC3622057  PMID: 23596403
catechol-O-methyltransferase; fear-potentiated startle; posttraumatic stress disorder; epigenetic; methylation; trauma
20.  Linkage analysis of plasma dopamine β-hydroxylase activity in families of patients with schizophrenia 
Human genetics  2011;130(5):635-643.
Dopamine β-hydroxylase (DβH) catalyzes the conversion of dopamine to norepinephrine. DβH enters the plasma after vesicular release from sympathetic neurons and the adrenal medulla. Plasma DβH activity (pDβH) varies widely among individuals, and genetic inheritance regulates that variation. Linkage studies suggested strong linkage of pDβH to ABO on 9q34, and positive evidence for linkage to the complement fixation locus on 19p13.2-13.3. Subsequent association studies strongly supported DBH, which maps adjacent to ABO, as the locus regulating a large proportion of the heritable variation in pDβH. Prior studies have suggested that variation in pDβH, or genetic variants at DβH, associate with differences in expression of psychotic symptoms in patients with schizophrenia and other idiopathic or drug-induced brain disorders, suggesting that DBH might be a genetic modifier of psychotic symptoms. As a first step toward investigating that hypothesis, we performed linkage analysis on pDβH in patients with schizophrenia and their relatives. The results strongly confirm linkage of markers at DBH to pDβH under several models (maximum multipoint LOD score, 6.33), but find no evidence to support linkage anywhere on chromosome 19. Accounting for the contributions to the linkage signal of three SNPs at DBH, rs1611115, rs1611122, and rs6271 reduced but did not eliminate the linkage peak, whereas accounting for all SNPs near DBH eliminated the signal entirely. Analysis of markers genome-wide uncovered positive evidence for linkage between markers at chromosome 20p12 (multi-point LOD = 3.1 at 27.2 cM). The present results provide the first direct evidence for linkage between DBH and pDβH, suggest that rs1611115, rs1611122, rs6271 and additional unidentified variants at or near DBH contribute to the genetic regulation of pDβH, and suggest that a locus near 20p12 also influences pDβH.
PMCID: PMC3193571  PMID: 21509519
21.  Differential Immune System DNA Methylation and Cytokine Regulation in Post-Traumatic Stress Disorder 
American Journal of Medical Genetics  2011;156B(6):700-708.
DNA methylation may mediate persistent changes in gene function following chronic stress. To examine this hypothesis, we evaluated African American subjects matched by age and sex, and stratified into four groups by post-traumatic stress disorder (PTSD) diagnosis and history of child abuse. Total Life Stress (TLS) was also assessed in all subjects. We evaluated DNA extracted from peripheral blood using the HumanMethylation27 BeadChip and analyzed both global and site-specific methylation. Methylation levels were examined for association with PTSD, child abuse history, and TLS using a linear mixed model adjusted for age, sex, and chip effects. Global methylation was increased in subjects with PTSD. CpG sites in five genes (TPR, CLEC9A, APC5, ANXA2, and TLR8) were differentially methylated in subjects with PTSD. Additionally, a CpG site in NPFFR2 was associated with TLS after adjustment for multiple testing. Notably, many of these genes have been previously associated with inflammation. Given these results and reports of immune dysregulation associated with trauma history, we compared plasma cytokine levels in these subjects and found IL4, IL2, and TNFα levels associated with PTSD, child abuse, and TLS. Together, these results suggest that psychosocial stress may alter global and gene-specific DNA methylation patterns potentially associated with peripheral immune dysregulation. Our results suggest the need for further research on the role of DNA methylation in stress-related illnesses.
PMCID: PMC3292872  PMID: 21714072
PTSD; epigenetic; total life stress; TPR; APC5; TLR8; NPFFR2
22.  Genotype-controlled analysis of serum dopamine β-hydroxylase activity in civilian Post-traumatic Stress Disorder 
Norepinephrine (NE) plays a central role in post-traumatic stress disorder (PTSD). Dopamine β-hydroxylase (DβH) converts dopamine (DA) to NE and its activity varies widely across individuals. Mustapic et al. (2007) reported a PTSD-associated deficit in serum DβH activity (sDβH) in a genotype-controlled analysis of combat veterans. We tested whether such a deficit would occur in a sample of civilians.
The severity of current adult PTSD symptoms and current DSM-IV diagnosis of PTSD were determined by the PTSD Symptom Scale (PSS). Adulthood trauma exposure was assessed using the Traumatic Experience Inventory (TEI). sDβH was assayed by HPLC with electrochemical detection and genotypes were determined using the Taqman® platform.
Two hundred and twenty seven African American (AA) subjects were enrolled in this study, with a mean age (± SD) of 42.9 (±12.9) years. We found a strong association between rs1611115 genotype and sDβH (p<0.0001). After controlling for adulthood trauma exposure, there were no significant differences of sDβH between subjects who met a PTSD diagnosis and those who did not (p>0.05) in any genotype group. No significant correlations were found between sDβH and PTSD severity, but sDβH significantly associated with the status of comorbid depression based on the cutoff of HAMD (p=0.014) in subjects with PTSD.
We have replicated in this sample the prior finding that DBH rs1611115 genotype strongly associates with sDβH. No associations between sDβH and PTSD diagnosis or symptom severity in this civilian sample.
PMCID: PMC2974949  PMID: 20621148
post-traumatic stress disorder; serum dopamine β-hydroxylase; genotype; depression; civilian trauma; association
23.  Post-traumatic stress disorder is associated with PACAP and the PAC1 receptor 
Nature  2011;470(7335):492-497.
Pituitary adenylate cyclase-activating polypeptide (PACAP) is known to broadly regulate the cellular stress response. In contrast, it is unclear if the PACAP/PAC1 receptor pathway has a role in human psychological stress responses, such as posttraumatic stress disorder (PTSD). In heavily traumatized subjects, we find a sex-specific association of PACAP blood levels with fear physiology, PTSD diagnosis and symptoms in females (N=64, replication N=74, p<0.005). Using a tag-SNP genetic approach (44 single nucleotide polymorphisms, SNPs) spanning the PACAP (ADCYAP1) and PAC1 (ADCYAP1R1) genes, we find a sex-specific association with PTSD. rs2267735, a SNP in a putative estrogen response element within ADCYAP1R1, predicts PTSD diagnosis and symptoms in females only (combined initial and replication samples: N=1237; p<2x10−5). This SNP also associates with fear discrimination and with ADCYAP1R1 mRNA expression. Methylation of ADCYAP1R1 is also associated with PTSD (p < 0.001). Complementing these human data, ADCYAP1R1 mRNA is induced with fear conditioning or estrogen replacement in rodent models. These data suggest that perturbations in the PACAP/PAC1 pathway are involved in abnormal stress responses underlying PTSD. These sex-specific effects may occur via estrogen regulation of ADCYAP1R1. PACAP levels and ADCYAP1R1 SNPs may serve as useful biomarkers to further our mechanistic understanding of PTSD.
PMCID: PMC3046811  PMID: 21350482
24.  Polymorphisms in CRHR1 and the serotonin transporter loci: gene x gene x environment interactions on depressive symptoms 
Gene x environment (GxE) interactions mediating depressive symptoms have been separately identified in the stress-sensitive serotonergic (5-HTTLPR) and corticotropin-releasing hormone (CRHR1) systems. Our objective was to examine whether the effects of child abuse are moderated by gene x gene (GxG) interactions between CRHR1 and 5-HTTLPR polymorphisms.
We used an association study examining GxGxE interactions of CRHR1 and 5-HTTLPR polymorphisms and measures of child abuse on adult depressive symptomatology. The participant population (N=1392) was African-American, of low socioeconomic status (60% with <$1000/month family income), and with high rates of childhood and lifetime trauma. Depressive symptoms were measured with Beck Depression Inventory (BDI) and history of Major Depression by Structure Clinical Interview based on DSM-IV (SCID).
We first replicated an interaction of child abuse and 5-HTTLPR on lifetime SCID diagnosis of major depression in a subsample (N= 236) of the study population – the largest African American 5-HTTLPR cohort reported to date. We then extended our previously reported interaction with both a CRHR1 SNP (rs110402) and TCA haplotype interacting with child abuse to predict current symptoms (N=1059; p = 0.0089). We found that the 5-HTTLPR S allele interacted with CRHR1 haplotypes and child abuse to predict current depressive symptoms (N = 856, p = 0.016).
These data suggest that GxE interactions predictive of depressive symptoms may be differentially sensitive to levels of childhood trauma, and the effects of child abuse are moderated by genetic variation at both the CRHR1 and 5-HTTLPR loci and by their GxG interaction.
PMCID: PMC2924813  PMID: 20029939
Child Abuse; Childhood Maltreatmet; Trauma; Depression; PTSD; Genetic; risk factor
25.  CSN-5, a Component of the COP9 Signalosome Complex, Regulates the Levels of UNC-96 and UNC-98, Two Components of M-lines in Caenorhabditis elegans Muscle 
Molecular Biology of the Cell  2009;20(15):3608-3616.
In Caenorhabditis elegans two M-line proteins, UNC-98 and UNC-96, are involved in myofibril assembly and/or maintenance, especially myosin thick filaments. We found that CSN-5, a component of the COP9 signalosome complex, binds to UNC-98 and -96 using the yeast two-hybrid method. These interactions were confirmed by biochemical methods. The CSN-5 protein contains a Mov34 domain. Although one other COP9 signalosome component, CSN-6, also has a Mov34 domain, CSN-6 did not interact with UNC-98 or -96. Anti-CSN-5 antibody colocalized with paramyosin at A-bands in wild type and colocalized with abnormal accumulations of paramyosin found in unc-98, -96, and -15 (encodes paramyosin) mutants. Double knockdown of csn-5 and -6 could slightly suppress the unc-96 mutant phenotype. In the double knockdown of csn-5 and -6, the levels of UNC-98 protein were increased and the levels of UNC-96 protein levels were slightly reduced, suggesting that CSN-5 promotes the degradation of UNC-98 and that CSN-5 stabilizes UNC-96. In unc-15 and unc-96 mutants, CSN-5 protein was reduced, implying the existence of feed back regulation from myofibril proteins to CSN-5 protein levels. Taken together, we found that CSN-5 functions in muscle cells to regulate UNC-98 and -96, two M-line proteins.
PMCID: PMC2719578  PMID: 19535455

Results 1-25 (34)