Search tips
Search criteria

Results 1-3 (3)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Novel approaches to minimize ventilator-induced lung injury 
BMC Medicine  2013;11:85.
Despite over 40 years of research, there is no specific lung-directed therapy for the acute respiratory distress syndrome (ARDS). Although much has evolved in our understanding of its pathogenesis and factors affecting patient outcome, supportive care with mechanical ventilation remains the cornerstone of treatment. Perhaps the most important advance in ARDS research has been the recognition that mechanical ventilation, although necessary to preserve life, can itself aggravate or cause lung damage through a variety of mechanisms collectively referred to as ventilator-induced lung injury (VILI). This improved understanding of ARDS and VILI has been important in designing lung-protective ventilatory strategies aimed at attenuating VILI and improving outcomes. Considerable effort has been made to enhance our mechanistic understanding of VILI and to develop new ventilatory strategies and therapeutic interventions to prevent and ameliorate VILI with the goal of improving outcomes in patients with ARDS. In this review, we will review the pathophysiology of VILI, discuss a number of novel physiological approaches for minimizing VILI, therapies to counteract biotrauma, and highlight a number of experimental studies to support these concepts.
PMCID: PMC3621434  PMID: 23536968
Acute lung injury; Acute respiratory distress syndrome; Critical illness; Cytokines; Extracorporeal membrane oxygenation; Heat shock response; Mechanical ventilation; Ventilatory support
2.  Type 2 Deiodinase and Host Responses of Sepsis and Acute Lung Injury 
The role of thyroid hormone metabolism in clinical outcomes of the critically ill remains unclear. Using preclinical models of acute lung injury (ALI), we assessed the gene and protein expression of type 2 deiodinase (DIO2), a key driver for synthesis of biologically active triiodothyronine, and addressed potential association of DIO2 genetic variants with ALI in a multiethnic cohort. DIO2 gene and protein expression levels in murine lung were validated by microarrays and immunoblotting. Lung injury was assessed by levels of bronchoalveolar lavage protein and leukocytes. Single-nucleotide polymorphisms were genotyped and ALI susceptibility association assessed. Significant increases in both DIO2 gene and D2 protein expression were observed in lung tissues from murine ALI models (LPS- and ventilator-induced lung injury), with expression directly increasing with the extent of lung injury. Mice with reduced levels of DIO2 expression (by silencing RNA) demonstrated reduced thyroxine levels in plasma and increased lung injury (increased bronchoalveolar lavage protein and leukocytes), suggesting a protective role for DIO2 in ALI. The G (Ala) allele of the Thr92Ala coding single-nucleotide polymorphism (rs225014) was protective in severe sepsis and severe sepsis–associated ALI after adjustments for age, sex, and genetic ancestry in a logistic regression model in European Americans. Our studies indicate that DIO2 is a novel ALI candidate gene, the nonsynonymous Thr92Ala coding variant of which confers ALI protection. Increased DIO2 expression may dampen the ALI inflammatory response, thereby strengthening the premise that thyroid hormone metabolism is intimately linked to the integrated response to inflammatory injury in critically ill patients.
PMCID: PMC3262665  PMID: 21685153
acute respiratory distress syndrome; hypothyroidism; mechanical ventilation; sepsis
3.  Pressure and Volume Limited Ventilation for the Ventilatory Management of Patients with Acute Lung Injury: A Systematic Review and Meta-Analysis 
PLoS ONE  2011;6(1):e14623.
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are life threatening clinical conditions seen in critically ill patients with diverse underlying illnesses. Lung injury may be perpetuated by ventilation strategies that do not limit lung volumes and airway pressures. We conducted a systematic review and meta-analysis of randomized controlled trials (RCTs) comparing pressure and volume-limited (PVL) ventilation strategies with more traditional mechanical ventilation in adults with ALI and ARDS.
Methods and Findings
We searched Medline, EMBASE, HEALTHSTAR and CENTRAL, related articles on PubMed™, conference proceedings and bibliographies of identified articles for randomized trials comparing PVL ventilation with traditional approaches to ventilation in critically ill adults with ALI and ARDS. Two reviewers independently selected trials, assessed trial quality, and abstracted data. We identified ten trials (n = 1,749) meeting study inclusion criteria. Tidal volumes achieved in control groups were at the lower end of the traditional range of 10–15 mL/kg. We found a clinically important but borderline statistically significant reduction in hospital mortality with PVL [relative risk (RR) 0.84; 95% CI 0.70, 1.00; p = 0.05]. This reduction in risk was attenuated (RR 0.90; 95% CI 0.74, 1.09, p = 0.27) in a sensitivity analysis which excluded 2 trials that combined PVL with open-lung strategies and stopped early for benefit. We found no effect of PVL on barotrauma; however, use of paralytic agents increased significantly with PVL (RR 1.37; 95% CI, 1.04, 1.82; p = 0.03).
This systematic review suggests that PVL strategies for mechanical ventilation in ALI and ARDS reduce mortality and are associated with increased use of paralytic agents.
PMCID: PMC3030554  PMID: 21298026

Results 1-3 (3)