Search tips
Search criteria

Results 1-7 (7)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  A ventilator strategy combining low tidal volume ventilation, recruitment maneuvers, and high positive end-expiratory pressure does not increase sedative, opioid, or neuromuscular blocker use in adults with acute respiratory distress syndrome and may improve patient comfort 
The Lung Open Ventilation Study (LOV Study) compared a low tidal volume strategy with an experimental strategy combining low tidal volume, lung recruitment maneuvers, and higher plateau and positive end-expiratory pressures (PEEP) in adults with acute respiratory distress syndrome (ARDS). Herein, we compared sedative, opioid, and neuromuscular blocker (NMB) use among patients managed with the intervention and control strategies and clinicians' assessment of comfort in both groups.
This was an observational substudy of the LOV Study, a randomized trial conducted in 30 intensive care units in Canada, Australia, and Saudi Arabia. In 16 centers, we recorded daily doses of sedatives, opioids, and NMBs and surveyed bedside clinicians about their own comfort with the assigned ventilator strategy and their perceptions of patient comfort. We compared characteristics and outcomes of patients who did and did not receive NMBs.
Study groups received similar sedative, opioid, and NMB dosing on days 1, 3, and 7. Patient comfort as assessed by clinicians was not different in the two groups: 93% perceived patients had no/minimal discomfort. In addition, 92% of clinicians were comfortable with the assigned ventilation strategy without significant differences between the two groups. When clinicians expressed discomfort, more expressed discomfort about PEEP levels in the intervention vs control group (2.9% vs 0.7%, P <0.0001), and more perceived patient discomfort among controls (6.0% vs 4.3%, P = 0.049). On multivariable analysis, the strongest associations with NMB use were higher plateau pressure (hazard ratio (HR) 1.15; 95% confidence interval (CI) 1.07 to 1.23; P = 0.0002) and higher daily sedative dose (HR 1.03; 95% CI 1.02 to 1.05; P <0.0001). Patients receiving NMBs had more barotrauma, longer durations of mechanical ventilation and hospital stay, and higher mortality.
In the LOV Study, high PEEP, low tidal volume ventilation did not increase sedative, opioid, or NMB doses in adults with ARDS, compared with a lower PEEP strategy, and appeared at least as comfortable for patients. NMB use may reflect worse lung injury, as these patients had more barotrauma, longer durations of ventilation, and higher mortality.
Trial registration Identifier NCT00182195
PMCID: PMC4273695  PMID: 25593749
ARDS; Neuromuscular blocker; Sedation; Opioid; Mechanical ventilation; Clinician comfort
2.  Time to Administration of Antibiotics among Inpatients with Severe Sepsis or Septic Shock 
Current evidence suggests that administration of appropriate antibiotic therapy within 1 h after the onset of hypotension significantly improves mortality rates among patients with severe sepsis and septic shock.
To determine the interval from recognition of severe sepsis or septic shock in inpatients to initial administration of antibiotic and to assess institutional compliance with the Surviving Sepsis Campaign’s recommendation for early antibiotic therapy.
A 6-month retrospective chart analysis was conducted to determine the interval from documented onset of hypotension to initial administration of antibiotic for patients with severe sepsis or septic shock. Patients who were admitted to a general medicine ward, a surgery ward, or the intensive care unit (ICU) of a 475-bed university-affiliated hospital and who met the criteria for severe sepsis or septic shock were eligible for inclusion. Patients who received antibiotics before meeting the criteria for severe sepsis or septic shock were excluded.
Charts for 100 patients with severe sepsis or septic shock were reviewed. The mean age was 69.0 years (standard deviation 18.7 years), and 56% were men. The median interval from onset of severe sepsis or septic shock to administration of antibiotic was 4.00 h (interquartile range [IQR] 1.80–6.45 h). The median interval from the time a physician ordered an antibiotic to administration of the drug was 1.28 h (IQR 0.57–3.05 h). The interval between ordering and administration differed significantly for patients on the wards (5.67 h), those with onset in the ICU (4.00 h), and those with onset in the emergency department (3.28 h) (p = 0.039). The overall survival rate was 56%.
At the study hospital, the interval from onset of severe sepsis or septic shock to initial administration of antibiotic to inpatients exceeded the 1-h period recommended by the Surviving Sepsis Campaign. These results will be used as a baseline for future quality assurance and improvement initiatives aimed at minimizing the time to antibiotic administration for this group of patients, who are at high risk of death.
PMCID: PMC4071083  PMID: 24970941
antibiotics; severe sepsis; septic shock; timing; antibiotiques; sepsis sévère; choc septique; rapidité d’intervention
3.  Predictors of physical restraint use in Canadian intensive care units 
Critical Care  2014;18(2):R46.
Physical restraint (PR) use in the intensive care unit (ICU) has been associated with higher rates of self-extubation and prolonged ICU length of stay. Our objectives were to describe patterns and predictors of PR use.
We conducted a secondary analysis of a prospective observational study of analgosedation, antipsychotic, neuromuscular blocker, and PR practices in 51 Canadian ICUs. Data were collected prospectively for all mechanically ventilated adults admitted during a two-week period. We tested for patient, treatment, and hospital characteristics that were associated with PR use and number of days of use, using logistic and Poisson regression respectively.
PR was used on 374 out of 711 (53%) patients, for a mean number of 4.1 (standard deviation (SD) 4.0) days. Treatment characteristics associated with PR were higher daily benzodiazepine dose (odds ratio (OR) 1.05, 95% confidence interval (CI) 1.00 to 1.11), higher daily opioid dose (OR 1.04, 95% CI 1.01 to 1.06), antipsychotic drugs (OR 3.09, 95% CI 1.74 to 5.48), agitation (Sedation-Agitation Scale (SAS) >4) (OR 3.73, 95% CI 1.50 to 9.29), and sedation administration method (continuous and bolus versus bolus only) (OR 3.09, 95% CI 1.74 to 5.48). Hospital characteristics associated with PR indicated patients were less likely to be restrained in ICUs from university-affiliated hospitals (OR 0.32, 95% CI 0.17 to 0.61). Mainly treatment characteristics were associated with more days of PR, including: higher daily benzodiazepine dose (incidence rate ratio (IRR) 1.07, 95% CI 1.01 to 1.13), daily sedation interruption (IRR 3.44, 95% CI 1.48 to 8.10), antipsychotic drugs (IRR 15.67, 95% CI 6.62 to 37.12), SAS <3 (IRR 2.62, 95% CI 1.08 to 6.35), and any adverse event including accidental device removal (IRR 8.27, 95% CI 2.07 to 33.08). Patient characteristics (age, gender, Acute Physiology and Chronic Health Evaluation II score, admission category, prior substance abuse, prior psychotropic medication, pre-existing psychiatric condition or dementia) were not associated with PR use or number of days used.
PR was used in half of the patients in these 51 ICUs. Treatment characteristics predominantly predicted PR use, as opposed to patient or hospital/ICU characteristics. Use of sedative, analgesic, and antipsychotic drugs, agitation, heavy sedation, and occurrence of an adverse event predicted PR use or number of days used.
PMCID: PMC4075126  PMID: 24661688
4.  An antimicrobial stewardship program improves antimicrobial treatment by culture site and the quality of antimicrobial prescribing in critically ill patients 
Critical Care  2012;16(6):R216.
Increasing antimicrobial costs, reduced development of novel antimicrobials, and growing antimicrobial resistance necessitate judicious use of available agents. Antimicrobial stewardship programs (ASPs) may improve antimicrobial use in intensive care units (ICUs). Our objective was to determine whether the introduction of an ASP in an ICU altered the decision to treat cultures from sterile sites compared with nonsterile sites (which may represent colonization or contamination). We also sought to determine whether ASP education improved documentation of antimicrobial use, including an explicit statement of antimicrobial regimen, indication, duration, and de-escalation.
We retrospectively analyzed consecutive patients with positive bacterial cultures admitted to a 16-bed medical-surgical ICU over 2-month periods before and after ASP introduction (April through May 2008 and 2009, respectively). We evaluated the antimicrobial treatment of positive sterile- versus nonsterile-site cultures, specified a priori. We reviewed patient charts for clinician documentation of three specific details regarding antimicrobials: an explicit statement of antimicrobial regimen/indication, duration, and de-escalation. We also analyzed cost and defined daily doses (DDDs) (a World Health Organization (WHO) standardized metric of use) before and after ASP.
Patient demographic data between the pre-ASP (n = 139) and post-ASP (n = 130) periods were similar. No difference was found in the percentage of positive cultures from sterile sites between the pre-ASP period and post-ASP period (44.9% versus 40.2%; P = 0.401). A significant increase was noted in the treatment of sterile-site cultures after ASP (64% versus 83%; P = 0.01) and a reduction in the treatment of nonsterile-site cultures (71% versus 46%; P = 0.0002). These differences were statistically significant when treatment decisions were analyzed both at an individual patient level and at an individual culture level. Increased explicit antimicrobial regimen documentation was observed after ASP (26% versus 71%; P < 0.0001). Also observed were increases in formally documented stop dates (53% versus 71%; P < 0.0001), regimen de-escalation (15% versus 23%; P = 0.026), and an overall reduction in cost and mean DDDs after ASP implementation.
Introduction of an ASP in the ICU was associated with improved microbiologically targeted therapy based on sterile or nonsterile cultures and improved documentation of antimicrobial use in the medical record.
PMCID: PMC3672592  PMID: 23127353
5.  Errors Associated with IV Infusions in Critical Care 
All medication errors are serious, but those associated with the IV route of administration often result in the most severe outcomes. According to the literature, IV medications are associated with 54% of potential adverse events, and 56% of medication errors.
To determine the type and frequency of errors associated with prescribing, documenting, and administering IV infusions, and to also determine if a correlation exists between the incidence of errors and either the time of day (day versus night) or the day of the week (weekday versus weekend) in an academic medicosurgical intensive care unit without computerized order entry or documentation.
As part of a quality improvement initiative, a prospective, observational audit was conducted for all IV infusions administered to critically ill patients during 40 randomly selected shifts over a 7-month period in 2007. For each IV infusion, data were collected from 3 sources: direct observation of administration of the medication to the patient, the medication administration record, and the patient’s medical chart. The primary outcome was the occurrence of any infusion-related errors, defined as any errors of omission or commission in the context of IV medication therapy that harmed or could have harmed the patient.
It was determined that up to 21 separate errors might occur in association with a single dose of an IV medication. In total, 1882 IV infusions were evaluated, and 5641 errors were identified. Omissions or discrepancies related to documentation accounted for 92.7% of all errors. The most common errors identified via each of the 3 data sources were incomplete labelling of IV tubing (1779 or 31.5% of all errors), omission of infusion diluent from the medication administration record (474 or 8.4% of all errors), and discrepancy between the medication order as recorded in the patient’s chart and the IV medication that was being infused (105 or 1.9% of all errors).
Strict definitions of errors and direct observation methods allowed identification of errors at every step of the medication administration process that was evaluated. Documentation discrepancies were the most prevalent type of errors in this paper-based system.
PMCID: PMC3282194  PMID: 22479108
IV infusion; continuous infusion; errors; intensive care unit; critical care; perfusion i.v.; perfusion continue; erreurs; unité de soins intensifs; soins aux malades en phase critique
6.  Prospective evaluation of an internet-linked handheld computer critical care knowledge access system 
Critical Care  2004;8(6):R414-R421.
Critical care physicians may benefit from immediate access to medical reference material. We evaluated the feasibility and potential benefits of a handheld computer based knowledge access system linking a central academic intensive care unit (ICU) to multiple community-based ICUs.
Four community hospital ICUs with 17 physicians participated in this prospective interventional study. Following training in the use of an internet-linked, updateable handheld computer knowledge access system, the physicians used the handheld devices in their clinical environment for a 12-month intervention period. Feasibility of the system was evaluated by tracking use of the handheld computer and by conducting surveys and focus group discussions. Before and after the intervention period, participants underwent simulated patient care scenarios designed to evaluate the information sources they accessed, as well as the speed and quality of their decision making. Participants generated admission orders during each scenario, which were scored by blinded evaluators.
Ten physicians (59%) used the system regularly, predominantly for nonmedical applications (median 32.8/month, interquartile range [IQR] 28.3–126.8), with medical software accessed less often (median 9/month, IQR 3.7–13.7). Eight out of 13 physicians (62%) who completed the final scenarios chose to use the handheld computer for information access. The median time to access information on the handheld handheld computer was 19 s (IQR 15–40 s). This group exhibited a significant improvement in admission order score as compared with those who used other resources (P = 0.018). Benefits and barriers to use of this technology were identified.
An updateable handheld computer system is feasible as a means of point-of-care access to medical reference material and may improve clinical decision making. However, during the study, acceptance of the system was variable. Improved training and new technology may overcome some of the barriers we identified.
PMCID: PMC1065064  PMID: 15566586
clinical; computer; critical care; decision support systems; handheld; internet; point-of-care systems; practice guidelines; simulation
7.  Toxicology and Environmental Health 
Critical Care  2004;8(3):204.
PMCID: PMC4082208
hazardous materials; toxicology

Results 1-7 (7)