PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  An Improved Breast Epithelial Sampling Method for Molecular Profiling and Biomarker Analysis in Women at Risk for Breast Cancer 
BACKGROUND
There is a strong need to define the molecular changes in normal at-risk breast epithelium to identify biomarkers and new targets for breast cancer prevention and to develop a molecular signature for risk assessment. Improved methods of breast epithelial sampling are needed to promote whole-genome molecular profiling, increase ductal epithelial cell yield, and reduce sample cell heterogeneity.
METHODS
We developed an improved method of breast ductal sampling with ductal lavage through a 22-gauge catheter and collection of ductal samples with a microaspirator. Women at normal risk or increased risk for breast cancer were studied. Ductal epithelial samples were analyzed for cytopathologic changes, cellular yield, epithelial cell purity, quality and quantity of DNA and RNA, and use in multiple downstream molecular applications.
RESULTS
We studied 50 subjects, including 40 subjects at normal risk for breast cancer and 37 subjects with non-nipple aspirate fluid-yielding ducts. This method provided multiple 1.0 mL samples of high ductal epithelial cell content (median ≥8 samples per subject of ≥5,000 cells per sample) with 80%–100% epithelial cell purity. Extraction of a single intact ductal sample (fluid and cells) or the separate frozen cellular component provided DNA and RNA for multiple downstream studies, including quantitative reverse transcription- polymerase chain reaction (PCR) for microRNA, quantitative PCR for the human telomerase reverse transcriptase gene, whole-genome DNA amplification, and array comparative genomic hybridization analysis.
CONCLUSION
An improved breast epithelial sampling method has been developed, which should significantly expand the acquisition and biomarker analysis of breast ductal epithelium in women at risk for breast cancer.
doi:10.4137/BCBCR.S23577
PMCID: PMC4462519  PMID: 26078587
breast cancer; breast ductal epithelium; breast duct sampling; normal breast epithelium; breast epithelial profiling
2.  Aryl hydrocarbon receptor expression is associated with a family history of upper gastrointestinal cancer in a high risk population exposed to aromatic hydrocarbons 
Background
Polycyclic aromatic hydrocarbon (PAH) exposure is a risk factor for esophageal squamous cell carcinoma (ESCC), and PAHs are ligands of the aryl hydrocarbon receptor (AhR). This study measured the expression of AhR and related genes in frozen esophageal cell samples from patients exposed to different levels of indoor air pollution, who did or did not have high-grade squamous dysplasia (HGD), and who did or did not have a family history (FH) of upper gastrointestinal cancer (UGI Ca).
Methods
147 samples were evaluated, including 23 (16%) from patients with HGD and 48 (33%) from patients without DYS who heated their homes with coal, without a chimney (a “high” indoor air pollution group), and 27 (18%) from patients with HGD and 49 (33%) from patients without DYS who did not heat their homes at all (a “low” indoor air pollution group). Nearly half (64 (44%)) had a FH of UGI Ca. RNA was extracted and Quantitative-PCR analysis was performed.
Results
AhR gene expression was detectable in 85 (58%) of the samples, and was more than 9-fold higher in those with a FH of UGI Ca (median expression (IQR) -1964 (-18000, -610) versus -18000 (-18000, -1036) Wilcoxon P = 0.02). Heating status, dysplasia category, age, gender, and smoking were not associated with AhR expression (linear regression, all P-values ≥0.1).
Conclusion
AhR expression was higher in patients with a FH of UGI Ca. Such individuals may be more susceptible to the deleterious effects of PAH exposure, including PAH-induced cancer.
doi:10.1158/1055-9965.EPI-08-1098
PMCID: PMC2796959  PMID: 19690180
Gastrointestinal tract cancer; Esophagus; Aryl hydrocarbon receptor; family history of cancer; gene expression; polycyclic aromatic hydrocarbons
3.  Visualization and Identification of IL-7 Producing Cells in Reporter Mice 
PLoS ONE  2009;4(11):e7637.
Interleukin-7 (IL-7) is required for lymphocyte development and homeostasis although the actual sites of IL-7 production have never been clearly identified. We produced a bacterial artificial chromosome (BAC) transgenic mouse expressing ECFP in the Il7 locus. The construct lacked a signal peptide and ECFP (enhanced cyan fluorescent protein ) accumulated inside IL-7-producing stromal cells in thoracic thymus, cervical thymus and bone marrow. In thymus, an extensive reticular network of IL-7-containing processes extended from cortical and medullary epithelial cells, closely contacting thymocytes. Central memory CD8 T cells, which require IL-7 and home to bone marrow, physically associated with IL-7-producing cells as we demonstrate by intravital imaging.
doi:10.1371/journal.pone.0007637
PMCID: PMC2770321  PMID: 19907640

Results 1-3 (3)