PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (534)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
more »
Document Types
1.  Prevention of CpG-Induced Pregnancy Disruption by Adoptive Transfer of In Vitro-Induced Regulatory T Cells 
PLoS ONE  2014;9(4):e94702.
Objective
To elucidate the mechanism by which embryo-resorption and preterm birth were enhanced by pathogenic CpG motif and to develop a counter strategy for normal pregnancy outcome.
Methods
This is an animal model-based study. In pregnant nonobese diabetic (NOD) mice and wild-type (WT) mice in the same strain background, an infection was mimicked by toll-like receptor 9 (TLR9) activation through CpG1826-injection. In vivo inactivation of IL-10 was performed to enhance pregnancy loss. Regulatory T cells induced by FTY720 in vitro from splenic CD4+CD25−Foxp3− cells (iTreg cells) were transferred to improve pregnancy outcomes in NOD mice.
Results
Embryo-resorption and preterm birth were readily induced by CpG1826 in NOD mice, but not in WT mice. However, inactivation of IL-10 using neutralizing antibody injections enhanced pregnancy loss in WT mice exposed to CpG, while adoptive transfer of iTreg cells increased decidual Foxp3+ Treg cells and IL-10+ cell number and rescued pregnancy.
Conclusions
NOD mice are prone to abortion and preterm birth. This can be attributed to lacking Treg cells and insufficient IL-10 expression. Adoptive transfer of iTreg cells can rescue CpG-mediated pregnancy failure.
doi:10.1371/journal.pone.0094702
PMCID: PMC3979847  PMID: 24714634
2.  Osteopathic Manipulative Therapy Induces Early Plasma Cytokine Release and Mobilization of a Population of Blood Dendritic Cells 
PLoS ONE  2014;9(3):e90132.
It has been claimed that osteopathic manipulative treatment (OMT) is able to enhance the immune response of individuals. In particular, it has been reported that OMT has the capability to increase antibody titers, enhance the efficacy of vaccination, and upregulate the numbers of circulating leukocytes. Recently, it has been shown in human patients suffering chronic low back pain, that OMT is able to modify the levels of cytokines such as IL-6 and TNF-α in blood upon repeated treatment. Further, experimental animal models show that lymphatic pump techniques can induce a transient increase of cytokines in the lymphatic circulation. Taking into account all these data, we decided to investigate in healthy individuals the capacity of OMT to induce a rapid modification of the levels of cytokines and leukocytes in circulation. Human volunteers were subjected to a mixture of lymphatic and thoracic OMT, and shortly after the levels of several cytokines were evaluated by protein array technology and ELISA multiplex analysis, while the profile and activation status of circulating leukocytes was extensively evaluated by multicolor flow cytometry. In addition, the levels of nitric oxide and C-reactive protein (CRP) in plasma were determined. In this study, our results show that OMT was not able to induce a rapid modification in the levels of plasma nitrites or CRP or in the proportion or activation status of central memory, effector memory or naïve CD4 and CD8 T cells. A significant decrease in the proportion of a subpopulation of blood dendritic cells was detected in OMT patients. Significant differences were also detected in the levels of immune molecules such as IL-8, MCP-1, MIP-1α and most notably, G-CSF. Thus, OMT is able to induce a rapid change in the immunological profile of particular circulating cytokines and leukocytes.
doi:10.1371/journal.pone.0090132
PMCID: PMC3948629  PMID: 24614605
3.  Reactive Oxygen Species Prevent Imiquimod-Induced Psoriatic Dermatitis through Enhancing Regulatory T Cell Function 
PLoS ONE  2014;9(3):e91146.
Psoriasis is a chronic inflammatory skin disease resulting from immune dysregulation. Regulatory T cells (Tregs) are important in the prevention of psoriasis. Traditionally, reactive oxygen species (ROS) are known to be implicated in the progression of inflammatory diseases, including psoriasis, but many recent studies suggested the protective role of ROS in immune-mediated diseases. In particular, severe cases of psoriasis vulgaris have been reported to be successfully treated by hyperbaric oxygen therapy (HBOT), which raises tissue level of ROS. Also it was reported that Treg function was closely associated with ROS level. However, it has been only investigated in lowered levels of ROS so far. Thus, in this study, to clarify the relationship between ROS level and Treg function, as well as their role in the pathogenesis of psoriasis, we investigated imiquimod-induced psoriatic dermatitis (PD) in association with Treg function both in elevated and lowered levels of ROS by using knockout mice, such as glutathione peroxidase-1−/− and neutrophil cytosolic factor-1−/− mice, as well as by using HBOT or chemicals, such as 2,3-dimethoxy-1,4-naphthoquinone and N-acetylcysteine. The results consistently showed Tregs were hyperfunctional in elevated levels of ROS, whereas hypofunctional in lowered levels of ROS. In addition, imiquimod-induced PD was attenuated in elevated levels of ROS, whereas aggravated in lowered levels of ROS. For the molecular mechanism that may link ROS level and Treg function, we investigated the expression of an immunoregulatory enzyme, indoleamine 2,3-dioxygenase (IDO) which is induced by ROS, in PD lesions. Taken together, it was implied that appropriately elevated levels of ROS might prevent psoriasis through enhancing IDO expression and Treg function.
doi:10.1371/journal.pone.0091146
PMCID: PMC3946742  PMID: 24608112
4.  Vitamin D Status and Chronic Obstructive Pulmonary Disease: A Prospective General Population Study 
PLoS ONE  2014;9(3):e90654.
Objectives
Vitamin D deficiency is common among persons with chronic obstructive pulmonary disease (COPD). Whether vitamin D affects the development and deterioration of COPD or is a consequence of the disease lacks clarity. We investigated the association between vitamin D status and prevalent and incident COPD in the general population.
Methods
We included a total of 12,041 individuals from three general population studies conducted in 1993–94, 1999–2001, and 2006–2008, respectively, with vitamin D measurements. Information on COPD was obtained from the Danish National Patient Register and The Danish Registry of Causes of Death.
Results
There were 85 prevalent and 463 incident cases of COPD (median follow-up 9.7 years). We found a statistically significant inverse association between vitamin D status and prevalent COPD with odds ratio = 0.89 (95% confidence interval, CI: 0.79, 1.0), but no statistically significant association with incident COPD with a hazard ratio = 0.98 (95% CI: 0.94, 1.0), respectively, per 10 nmol/l higher vitamin D status, when adjusted for possible confounders.
Conclusions
We found a statistically significant inverse cross-sectional association between vitamin D status and COPD, but no association between vitamin D status and incident COPD.
doi:10.1371/journal.pone.0090654
PMCID: PMC3942472  PMID: 24594696
5.  Abrogation of Rbpj Attenuates Experimental Autoimmune Uveoretinitis by Inhibiting IL-22-Producing CD4+ T Cells 
PLoS ONE  2014;9(2):e89266.
Experimental autoimmune uveoretinitis (EAU) is an organ-specific T cell-mediated disease induced by immunizing mice with interphotoreceptor retinoid binding protein (IRBP). Autoaggressive CD4+ T cells are the major pathogenic population for EAU. We investigated the contribution of Notch signaling in T cells to EAU pathogenesis because Notch signaling regulates various aspects of CD4+ T cell functions. Rbpj is required for Notch signaling, and Rbpj deficiency in T cells inhibited EAU disease severity. The amelioration of EAU in T cell-specific Rbpj-deficient mice correlated with low levels of IL-22 production from CD4+ T cells, although IRBP-specific CD4+ T cell proliferation and Th17 differentiation were unaffected. Administration of recombinant IL-22 during the late phase, but not the early phase, of EAU increased EAU clinical scores in T cell-specific Rbpj-deficient mice. Notch inhibition in mice immunized with IRBP with a γ-secretase inhibitor (GSI) suppressed EAU progression, even when GSI was administered as late as 13 days after IRBP immunization. Our data demonstrate that Rbpj/Notch-mediated IL-22 production in T cells has a key pathological role in the late phase of EAU, and suggest that Notch blockade might be a useful therapeutic approach for treating EAU.
doi:10.1371/journal.pone.0089266
PMCID: PMC3938452  PMID: 24586644
6.  Monocytes Expand with Immune Dysregulation and Is Associated with Insulin Resistance in Older Individuals with Chronic HIV 
PLoS ONE  2014;9(2):e90330.
Background
Rates of insulin resistance are increased in HIV-infected patients on stable antiretroviral therapy (ART). Such increase may partially be due to HIV-induced immune dysregulation involving monocytes (MO) and its subsets.
Materials and Methods
Cross-sectional analysis of 141 HIV-infected subjects age ≥ 40 years on stable ART. Homeostatic model assessment–insulin resistance (HOMA-IR) and rates of metabolic syndrome were calculated. Subjects were classified by fasting glucose and oral glucose tolerance test (OGTT) into clinical diabetes categories. Multi-parametric flow cytometry was used to determine MO subset percentages: [classical (CD14++CD16−), intermediate (CD14++CD16+), non-classical (CD14low/+CD16++), and a recently identified fourth (CD14low/+CD16−) ‘transitional’ MO subset] and percentage of activated (CD38+HLA-DR+) CD8 T cells. Absolute levels of cells were calculated using clinical CBC and T cell subset data. Multiple plasma soluble biomarkers were assessed by Luminex technology.
Results
Median age 50 years, CD4 count (percent) 505 cells/µL (29%), and 89% male. Total MO (r = −0.23, p = 0.006) and classical and non-classical MO subsets correlated negatively with CD4 percent. No correlations were seen with CD4 count as absolute values. Log-total MO and log-classical MO predicted HOMA-IR independently of HIV immuno-virologic and diabetes risk factors (β = 0.42, p = 0.02 and β = 0.35, p = 0.02, respectively) and were increased in subjects with metabolic syndrome (p = 0.03 and p = 0.05 respectively). Total and/or subset MO levels correlated with multiple soluble plasma biomarkers including CRP, IL-6, MMP-9, MPO, SAA, SAP and tPAI-1, with tPAI-1 independently predicting HOMA-IR (β = 0.74, p<0.001).
Conclusions
MO levels increase with worsening HIV immune dysregulation as assessed by CD4 percent. CD4 percent may provide additional information about MO and metabolic risk in this population beyond absolute values. MO, and specifically classical MO, may contribute to insulin resistance and metabolic syndrome during chronic HIV infection. Multiple soluble plasma biomarkers including tPAI-1 increase with increase in MO. Levels of tPAI-1 independently predict the development of insulin resistance.
doi:10.1371/journal.pone.0090330
PMCID: PMC3937368  PMID: 24587328
7.  IL-10-Producing B Cells Are Induced Early in HIV-1 Infection and Suppress HIV-1-Specific T Cell Responses 
PLoS ONE  2014;9(2):e89236.
A rare subset of IL-10-producing B cells, named regulatory B cells (Bregs), suppresses adaptive immune responses and inflammation in mice. In this study, we examined the role of IL-10-producing B cells in HIV-1 infection. Compared to uninfected controls, IL-10-producing B cell frequencies were elevated in both blood and sigmoid colon during the early and chronic phase of untreated HIV-1 infection. Ex vivo IL-10-producing B cell frequency in early HIV-1 infection directly correlated with viral load. IL-10-producing B cells from HIV-1 infected individuals were enriched in CD19+TIM-1+ B cells and were enriched for specificity to trimeric HIV-1 envelope protein. Anti-retroviral therapy was associated with reduced IL-10-producing B cell frequencies. Treatment of B cells from healthy donors with microbial metabolites and Toll-like receptor (TLR) agonists could induce an IL-10 producing phenotype, suggesting that the elevated bacterial translocation characteristic of HIV-1 infection may promote IL-10-producing B cell development. Similar to regulatory B cells found in mice, IL-10-producing B cells from HIV-1-infected individuals suppressed HIV-1-specific T cell responses in vitro, and this suppression is IL-10-dependent. Also, ex vivo IL-10-producing B cell frequency inversely correlated with contemporaneous ex vivo HIV-1-specific T cell responses. Our findings show that IL-10-producing B cells are induced early in HIV-1 infection, can be HIV-1 specific, and are able to inhibit effective anti-HIV-1 T cell responses. HIV-1 may dysregulate B cells toward Bregs as an immune evasion strategy.
doi:10.1371/journal.pone.0089236
PMCID: PMC3931714  PMID: 24586620
8.  Levels of CD56+TIM-3- Effector CD8 T Cells Distinguish HIV Natural Virus Suppressors from Patients Receiving Antiretroviral Therapy 
PLoS ONE  2014;9(2):e88884.
Prolonged antiretroviral therapy (ART) with effective HIV suppression and reconstitution of CD4 T cells, fails to restore CD8 T cell lytic effector function that is needed to eradicate the viral reservoir. Better understanding of the phenotype and function of circulating CD8 cells in HIV patients will contribute to new targeted therapies directed at increasing CD8 T cell lytic effector function and destruction of the viral reservoir. We show that CD8 T cells from ART treated patients had sharply reduced expression of CD56 (neural cell adhesion molecule-1), a marker associated with cytolytic function whereas elite patients who control HIV in the absence of ART had CD56+ CD8 T cell levels similar to uninfected controls. The CD56+ CD8 T cells had higher perforin upregulation as well as degranulation following stimulation with HIV gag peptides compared with CD56 negative CD8 T cells. Elite patients had the highest frequencies of perforin producing CD56+ CD8 T cells among all HIV+ groups. In patients receiving ART we noted high levels of the exhaustion marker TIM-3 on CD56+ CD8 T cells, implying that defective effector function was related to immune exhaustion. CD56+ CD8 T cells from elite or treated HIV patients responded to PMA plus ionomycin stimulation, and expressed transcription factors T-bet and EOMES at levels similar to uninfected controls. Consequently, the lytic effector defect in chronic HIV disease is due to immune exhaustion and quantitative loss of CD56+ CD8 T cells and this defect is not repaired in patients where viremia is suppressed and CD4 T cells are recovered after ART.
Reconstituting the cytotoxic CD56+ subset of CD8+ T cells through new interventions might improve the lytic effector capacity and contribute to reducing the viral reservoir. Our initial studies indicate that IL-15 treatment partly reverses the CD56 defect, implying that myeloid cell defects could be targeted for immune therapy during chronic HIV disease.
doi:10.1371/journal.pone.0088884
PMCID: PMC3919829  PMID: 24520422
9.  Slow Turnover of HIV-1 Receptors on Quiescent CD4+ T Cells Causes Prolonged Surface Retention of gp120 Immune Complexes In Vivo 
PLoS ONE  2014;9(2):e86479.
Peripheral blood CD4+ T cells in HIV-1+ patients are coated with Ig. However, the causes and consequences of the presence of Ig+ CD4+ T cells remain unknown. Previous studies have demonstrated the rapid turnover of viral receptors (VRs) on lymphoma and tumor cells. The present study investigates the turnover of VRs on peripheral quiescent CD4+ T cells (qCD4s), which are the most abundant peripheral blood CD4+ T cells. Utilizing pharmacological and immunological approaches, we found that the turnover of VRs on qCD4s is extremely slow. As a result, exposure to gp120 or HIV-1 virions in vitro causes gp120 to remain on the surface for a long period of time. It requires approximately three days for cell-bound gp120 on the surface to be reduced by 50%. In the presence of patient serum, gp120 forms surface immune complexes (ICs) that are also retained for a long time. Indeed, when examining the percentages of Ig+ CD4+ T cells at different stages of HIV-1 infection, approximately 70% of peripheral resting CD4+ T cells (rCD4s) were coated with surface VRs bound to slow-turnover gp120-Ig. The levels of circulating ICs in patient serum were insufficient to form surface ICs on qCD4s, suggesting that surface ICs on qCD4s require much higher concentrations of HIV-1 exposure such as might be found in lymph nodes. In the presence of macrophages, Ig+ CD4+ T cells generated in vitro or directly isolated from HIV-1+ patients were ultimately phagocytosed. Similarly, the frequencies and percentages of Ig+ rCD4s were significantly increased in an HIV-1+ patient after splenectomy, indicating that Ig+ rCD4s might be removed from circulation and that non-neutralizing anti-envelope antibodies could play a detrimental role in HIV-1 pathogenesis. These findings provide novel insights for vaccine development and a rationale for using Ig+ rCD4 levels as an independent clinical marker.
doi:10.1371/journal.pone.0086479
PMCID: PMC3916329  PMID: 24516533
10.  Tolerogenic Properties of Lymphatic Endothelial Cells Are Controlled by the Lymph Node Microenvironment 
PLoS ONE  2014;9(2):e87740.
Peripheral self-tolerance eliminates lymphocytes specific for tissue-specific antigens not encountered in the thymus. Recently, we demonstrated that lymphatic endothelial cells in mice directly express peripheral tissue antigens, including tyrosinase, and induce deletion of specific CD8 T cells via Programmed Death Ligand-1 (PD-L1). Here, we demonstrate that high-level expression of peripheral tissue antigens and PD-L1 is confined to lymphatic endothelial cells in lymph nodes, as opposed to tissue (diaphragm and colon) lymphatics. Lymphatic endothelial cells in the lymph node medullary sinus express the highest levels of peripheral tissue antigens and PD-L1, and are the only subpopulation that expresses tyrosinase epitope. The representation of lymphatic endothelial cells in the medullary sinus expressing high-level PD-L1, which is necessary for normal CD8 T cell deletion kinetics, is controlled by lymphotoxin-β receptor signaling and B cells. Lymphatic endothelial cells from neonatal mice do not express high-level PD-L1 or present tyrosinase epitope. This work uncovers a critical role for the lymph node microenvironment in endowing lymphatic endothelial cells with potent tolerogenic properties.
doi:10.1371/journal.pone.0087740
PMCID: PMC3913631  PMID: 24503860
11.  Effect of Maraviroc Intensification on HIV-1-Specific T Cell Immunity in Recently HIV-1-Infected Individuals 
PLoS ONE  2014;9(1):e87334.
Background
The effect of maraviroc on the maintenance and the function of HIV-1-specific T cell responses remains unknown.
Methods
Subjects recently infected with HIV-1 were randomized to receive anti-retroviral treatment with or without maraviroc intensification for 48 weeks, and were monitored up to week 60. PBMC and in vitro-expanded T cells were tested for responses to the entire HIV proteome by ELISpot analyses. Intracellular cytokine staining assays were conducted to monitor the (poly)-functionality of HIV-1-specific T cells. Analyses were performed at baseline and week 24 after treatment start, and at week 60 (3 months after maraviroc discontinuation).
Results
Maraviroc intensification was associated with a slower decay of virus-specific T cell responses over time compared to the non-intensified regimen in both direct ex-vivo as well as in in-vitro expanded cells. The effector function profiles of virus-specific CD8+ T cells were indistinguishable between the two arms and did not change over time between the groups.
Conclusions
Maraviroc did not negatively impact any of the measured parameters, but was rather associated with a prolonged maintenance of HIV-1-specific T cell responses. Maraviroc, in addition to its original effect as viral entry inhibitor, may provide an additional benefit on the maintenance of virus-specific T cells which may be especially important for future viral eradication strategies.
doi:10.1371/journal.pone.0087334
PMCID: PMC3903883  PMID: 24475275
12.  CD4+ Primary T Cells Expressing HCV-Core Protein Upregulate Foxp3 and IL-10, Suppressing CD4 and CD8 T Cells 
PLoS ONE  2014;9(1):e85191.
Adaptive T cell responses are critical for controlling HCV infection. While there is clinical evidence of a relevant role for regulatory T cells in chronic HCV-infected patients, based on their increased number and function; mechanisms underlying such a phenomena are still poorly understood. Accumulating evidence suggests that proteins from Hepatitis C virus can suppress host immune responses. We and others have shown that HCV is present in CD4+ lymphocytes from chronically infected patients and that HCV-core protein induces a state of unresponsiveness in the CD4+ tumor cell line Jurkat. Here we show that CD4+ primary T cells lentivirally transduced with HCV-core, not only acquire an anergic phenotype but also inhibit IL-2 production and proliferation of bystander CD4+ or CD8+ T cells in response to anti-CD3 plus anti-CD28 stimulation. Core-transduced CD4+ T cells show a phenotype characterized by an increased basal secretion of the regulatory cytokine IL-10, a decreased IFN-γ production upon stimulation, as well as expression of regulatory T cell markers, CTLA-4, and Foxp3. A significant induction of CD4+CD25+CD127lowPD-1highTIM-3high regulatory T cells with an exhausted phenotype was also observed. Moreover, CCR7 expression decreased in HCV-core expressing CD4+ T cells explaining their sequestration in inflamed tissues such as the infected liver. This work provides a new perspective on de novo generation of regulatory CD4+ T cells in the periphery, induced by the expression of a single viral protein.
doi:10.1371/journal.pone.0085191
PMCID: PMC3896374  PMID: 24465502
13.  Isolation of Highly Suppressive CD25+FoxP3+ T Regulatory Cells from G-CSF-Mobilized Donors with Retention of Cytotoxic Anti-Viral CTLs: Application for Multi-Functional Immunotherapy Post Stem Cell Transplantation 
PLoS ONE  2014;9(1):e85911.
Previous studies have demonstrated the effective control of cytomegalovirus (CMV) infections post haematopoietic stem cell transplant through the adoptive transfer of donor derived CMV-specific T cells (CMV-T). Strategies for manufacturing CMV immunotherapies has involved a second leukapheresis or blood draw from the donor, which in the unrelated donor setting is not always possible. We have investigated the feasibility of using an aliquot of the original G-CSF-mobilized graft as a starting material for manufacture of CMV-T and examined the activation marker CD25 as a targeted approach for identification and isolation following CMVpp65 peptide stimulation. CD25+ cells isolated from G-CSF-mobilized apheresis revealed a significant increase in the proportion of FoxP3 expression when compared with conventional non-mobilized CD25+ cells and showed a superior suppressive capacity in a T cell proliferation assay, demonstrating the emergence of a population of Tregs not present in non-mobilized apheresis collections. The expansion of CD25+ CMV-T in short-term culture resulted in a mixed population of CD4+ and CD8+ T cells with CMV-specificity that secreted cytotoxic effector molecules and lysed CMVpp65 peptide-loaded phytohaemagglutinin-stimulated blasts. Furthermore CD25 expanded cells retained their suppressive capacity but did not maintain FoxP3 expression or secrete IL-10. In summary our data indicates that CD25 enrichment post CMV stimulation in G-CSF-mobilized PBMCs results in the simultaneous generation of both a functional population of anti-viral T cells and Tregs thus illustrating a potential single therapeutic strategy for the treatment of both GvHD and CMV reactivation following allogeneic haematopoietic stem cell transplantation. The use of G-CSF-mobilized cells as a starting material for cell therapy manufacture represents a feasible approach to alleviating the many problems incurred with successive donations and procurement of cells from unrelated donors. This approach may therefore simplify the clinical application of adoptive immunotherapy and broaden the approach for manufacturing multi-functional T cells.
doi:10.1371/journal.pone.0085911
PMCID: PMC3895016  PMID: 24465783
14.  Induction of Chemoresistance by All-Trans Retinoic Acid via a Noncanonical Signaling in Multiple Myeloma Cells 
PLoS ONE  2014;9(1):e85571.
Despite the successful application of all-trans retinoic acid (ATRA) in multiple myeloma treatment, ATRA-induced chemoresistance in the myeloma patients is very common in clinic. In this study, we evaluated the effect of ATRA on the expression of apurinic endonuclease/redox factor-1 (Ape/Ref-1) in the U266 and RPMI-8226 myeloma cells to explore the chemoresistance mechanism involved. ATRA treatment induced upregulation of Ape/Ref-1 via a noncanonical signaling pathway, leading to enhanced pro-survival activity counteracting melphalan (an alkylating agent). ATRA rapidly activated p38-MSK (mitogen- and stress activated protein kinase) cascade to phosphorylate cAMP response element-binding protein (CREB). Phosphorylated CREB was recruited to the Ape/Ref-1 promoter to evoke the gene expression. The stimulation of ATRA on Ape/Ref-1 expression was attenuated by either p38-MSK inhibitors or overexpression of dominant-negative MSK1 mutants. Moreover, ATRA-mediated Ape/Ref-1 upregulation was correlated with histone modification and activation of CBP/p300, an important cofactors for CREB transcriptional activity. C646, a competitive CBP/p300 inhibitor, abolished the upregulation of Ape/Ref-1 induced by ATRA. Intriguingly, CBP rather than p300 played a dominant role in the expression of Ape/Ref-1. Hence, our study suggests the existence of a noncanonical mechanism involving p38-MSK-CREB cascade and CBP induction to mediate ATRA-induced Ape/Ref-1 expression and acquired chemoresistance in myeloma cells.
doi:10.1371/journal.pone.0085571
PMCID: PMC3887062  PMID: 24416428
15.  FoxP3+ Regulatory T Cells Attenuate Experimental Necrotizing Enterocolitis 
PLoS ONE  2013;8(12):e82963.
Necrotizing enterocolitis (NEC) results from severe intestinal inflammation in premature infants. FoxP3+ regulatory T cells (Tregs) are central to gut homeostasis. While Treg proportions are significantly reduced in the ileums of premature infants with NEC, it is unknown whether they play a critical function in preventing NEC. This study investigated Treg development in newborn rat pups and their role in experimental NEC induction. Utilizing an established rat model of experimental NEC, the ontogeny of T cells and Tregs in newborn pups was characterized by flow cytometry. To investigate the functions of Tregs, newborn pups were given Tregs harvested from adult rats prior to NEC induction to assess clinical improvement and mechanisms of immune regulation. The results revealed that there were few Treg numbers in the terminal ileums of newborn rats and 8-fold reduction after NEC. Adoptive transfer of Tregs significantly improved weight loss, survival from 53% to 88%, and NEC incidence from 87% to 35%. The Tregs modulated the immune response as manifested in reduced CD80 expression on antigen presenting cells and decreased T cell activation within the mesenteric lymph nodes. These findings suggest that while Tregs are present in the intestines, their numbers might be insufficient to dampen the excessive inflammatory state in NEC. Adoptive transfer of Tregs attenuates the severity of NEC by limiting the immune response. Strategies to enhance Tregs have a therapeutic potential in controlling the development of NEC.
doi:10.1371/journal.pone.0082963
PMCID: PMC3867412  PMID: 24367573
16.  Topical TLR7 agonist imiquimod can induce immune-mediated rejection of skin metastases in patients with breast cancer 
Purpose
Skin metastases of breast cancer remain a therapeutic challenge. Toll-like receptor 7 agonist imiquimod is an immune response modifier and can induce immune-mediated rejection of primary skin malignancies when topically applied. Here we tested the hypothesis that topical imiquimod stimulates local anti-tumor immunity and induces the regression of breast cancer skin metastases.
Methods
A prospective clinical trial was designed to evaluate the local tumor response rate of breast cancer skin metastases treated with topical imiquimod, applied 5 days/week for 8 weeks. Safety and immunological correlates were secondary objectives.
Results
Ten patients were enrolled and completed the study. Imiquimod treatment was well tolerated, with only grade 1-2 transient local and systemic side effects consistent with imiquimod's immunomodulatory effects. Two patients achieved a partial response (20%; 95% CI 3% - 56%). Responders showed histological tumor regression with evidence of an immune-mediated response, demonstrated by changes in the tumor lymphocytic infiltrate and locally produced cytokines.
Conclusion
Topical imiquimod is a beneficial treatment modality for breast cancer metastatic to skin/chest wall and is well tolerated. Importantly, imiquimod can promote a pro-immunogenic tumor microenvironment in breast cancer. Preclinical data generated by our group suggest even superior results with a combination of imiquimod and ionizing radiation and we are currently testing in patients whether the combination can further improve anti-tumor immune and clinical responses.
doi:10.1158/1078-0432.CCR-12-1149
PMCID: PMC3580198  PMID: 22767669
imiquimod; toll-like receptor; breast cancer; chest wall recurrence; skin metastases
17.  The Metalloprotease ADAM12 Regulates the Effector Function of Human Th17 Cells 
PLoS ONE  2013;8(11):e81146.
A key modulator of immune homeostasis, TGFβ has an important role in the differentiation of regulatory T cells (Tregs) and IL-17-secreting T cells (Th17). How TGFβ regulates these functionally opposing T cell subsets is not well understood. We determined that an ADAM family metalloprotease called ADAM12 is specifically and highly expressed in both Tregs and CCR6+ Th17 cells. ADAM12 is induced in vitro upon differentiation of naïve T cells to Th17 cells or IL-17-secreting Tregs. Remarkably, silencing ADAM12 expression in CCR6+ memory T cells enhances the production of Th17 cytokines, similar to suppressing TGFβ signaling. Further, ADAM12 knockdown in naïve human T cells polarized towards Th17/Treg cells, or ectopically expressing RORC, greatly enhances IL-17-secreting cell differentiation, more potently then inhibiting TGFβ signals. Together, our findings reveal a novel regulatory role for ADAM12 in Th17 cell differentiation or function and may have implications in regulating their aberrant responses during immune pathologies.
doi:10.1371/journal.pone.0081146
PMCID: PMC3867213  PMID: 24363794
18.  Increased Numbers of Circulating CD8 Effector Memory T Cells before Transplantation Enhance the Risk of Acute Rejection in Lung Transplant Recipients 
PLoS ONE  2013;8(11):e80601.
The effector and regulatory T cell subpopulations involved in the development of acute rejection episodes in lung transplantation remain to be elucidated. Twenty-seven lung transplant candidates were prospectively monitored before transplantation and within the first year post-transplantation. Regulatory, Th17, memory and naïve T cells were measured in peripheral blood of lung transplant recipients by flow cytometry. No association of acute rejection with number of peripheral regulatory T cells and Th17 cells was found. However, effector memory subsets in acute rejection patients were increased during the first two months post-transplant. Interestingly, patients waiting for lung transplant with levels of CD8+ effector memory T cells over 185 cells/mm3 had a significant increased risk of rejection [OR: 5.62 (95% CI: 1.08-29.37), p=0.04]. In multivariate analysis adjusted for age and gender the odds ratio for rejection was: OR: 5.89 (95% CI: 1.08-32.24), p=0.04. These data suggest a correlation between acute rejection and effector memory T cells in lung transplant recipients. The measurement of peripheral blood CD8+ effector memory T cells prior to lung transplant may define patients at high risk of acute lung rejection.
doi:10.1371/journal.pone.0080601
PMCID: PMC3827433  PMID: 24236187
19.  The Cortical Actin Determines Different Susceptibility of Naïve and Memory CD4+ T Cells to HIV-1 Cell-to-Cell Transmission and Infection 
PLoS ONE  2013;8(11):e79221.
Memory CD4+ T cells are preferentially infected by HIV-1 compared to naïve cells. HIV-1 fusion and entry is a dynamic process in which the cytoskeleton plays an important role by allowing virion internalization and uncoating. Here, we evaluate the role of the cortical actin in cell-to-cell transfer of virus antigens and infection of target CD4+ T cells. Using different actin remodeling compounds we demonstrate that efficiency of HIV-internalization was proportional to the actin polymerization of the target cell. Naïve (CD45RA+) and memory (CD45RA−) CD4+ T cells could be phenotypically differentiated by the degree of cortical actin density and their capacity to capture virus. Thus, the higher cortical actin density of memory CD4+ T cells was associated to increased efficiency of HIV-antigen internalization and the establishment of a productive infection. Conversely, the lower cortical actin density in naïve CD4+ T cells restricted viral antigen transfer and consequently HIV-1 infection. In conclusion, the cortical actin density differentially affects the susceptibility to HIV-1 infection in naïve and memory CD4+ T cells by modulating the efficiency of HIV antigen internalization.
doi:10.1371/journal.pone.0079221
PMCID: PMC3823590  PMID: 24244453
20.  Grape Seed Proanthocyanidin Extract–Mediated Regulation of STAT3 Proteins Contributes to Treg Differentiation and Attenuates Inflammation in a Murine Model of Obesity-Associated Arthritis 
PLoS ONE  2013;8(11):e78843.
Grape seed proanthocyanidin extract (GSPE) is a natural flavonoid that exerts anti-inflammatory properties. Obesity is an inflammatory condition and inflammatory cells and their secretion of pro-inflammatory molecules contribute to the pathogenesis of obesity. Rheumatoid arthritis (RA) is a chronic autoimmune disease that is characterized by inflammation of joints lined by synovium. Previously, we demonstrated that obesity augmented arthritis severity in collagen induced arthritis (CIA), a murine model of human RA. Here, we investigated whether oral administration of GSPE showed antiobesity and anti-arthritic effects in high-fat diet-induced obese (DIO) mice and in obese CIA mice, respectively. The pathophysiologic mechanisms by which GSPE attenuates weight gain and arthritis severity in vivo were also investigated. In DIO mice, GSPE administration significantly inhibited weight gain, reduced fat infiltration in liver and improved serum lipid profiles. The antiobesity effect of GSPE was associated with increased populations of regulatory T (Treg) cells and those of decreased Th17 cells. Decrease of Th17 cells was associated with significant inhibition of their key transcriptional factors, pSTAT3Tyr705 and pSTAT3Ser727. On the contrary, GSPE-induced Treg induction was associated with enhanced pSTAT5 expression. To identify the anti-arthritis effects of GSPE, GSPE was given orally for 7 weeks after type II collagen immunization. GSPE treatment significantly attenuated the development of autoimmune arthritis in obese CIA model. In line with DIO mice, GSPE administration decreased Th17 cells and reciprocally increased Treg cells by regulating STAT proteins in autoimmune arthritis model. The expressions of pro-inflammatory cytokines and nitrotyrosine in synovium were significantly inhibited by GSPE treatment. Taken together, GSPE functions as a reciprocal regulator of T cell differentiation – suppression of Th17 cells and induction of Tregs in both DIO and obese CIA mice. GSPE may act as a therapeutic agent to treat immunologic diseases related with enhanced STAT3 activity such as metabolic disorders and autoimmune diseases.
doi:10.1371/journal.pone.0078843
PMCID: PMC3818494  PMID: 24223854
21.  Th17/IL-17A Might Play a Protective Role in Chronic Lymphocytic Leukemia Immunity 
PLoS ONE  2013;8(11):e78091.
Th17 cells, a recently discovered subset of T helper cells that secrete IL-17A, can affect the inflammation process autoimmune and cancer diseases development. The purpose of this study was to evaluate the role of Th17 cells and IL17A in biology of CLL. The study group included 294 untreated CLL patients in different clinical stages. Here, we show that higher Th17 and IL-17A values were associated with less advanced clinical stage of CLL. Th17 cells’ percentages in PB were lower in patients who died due to CLL during follow-up due to CLL (as compared to surviving patients) and in patients responding to first-line therapy with fludarabine-based regimens (as compared to non-responders). IL-17A inversely correlated with the time from CLL diagnosis to the start of therapy and was lower in patients who required treatment during follow-up. Th-17 and IL-17A values were lower in patients with adverse prognostic factors (17p and 11q deletion, CD38 and ZAP-70 expression). CLL patients with detectable IL-17A mRNA in T cells were in Rai Stage 0 and negative for both ZAP-70 and CD38 expression. Th17 percentages positively correlated with iNKT and adversely with Treg cells. The results of this study suggest that Th17 may play a beneficial role in CLL immunity.
doi:10.1371/journal.pone.0078091
PMCID: PMC3815235  PMID: 24223764
22.  Correction: Probing the Effector and Suppressive Functions of Human T Cell Subsets Using Antigen-Specific Engineered T Cell Receptors 
PLoS ONE  2013;8(10):10.1371/annotation/cbc71d72-f1a2-45de-9d4a-cb0c8dc076b5.
doi:10.1371/annotation/cbc71d72-f1a2-45de-9d4a-cb0c8dc076b5
PMCID: PMC3815353  PMID: 24223085
23.  Persistence of EBV Antigen-Specific CD8 T Cell Clonotypes during Homeostatic Immune Reconstitution in Cancer Patients 
PLoS ONE  2013;8(10):e78686.
Persistent viruses are kept in check by specific lymphocytes. The clonal T cell receptor (TCR) repertoire against Epstein-Barr virus (EBV), once established following primary infection, exhibits a robust stability over time. However, the determinants contributing to this long-term persistence are still poorly characterized. Taking advantage of an in vivo clinical setting where lymphocyte homeostasis was transiently perturbed, we studied EBV antigen-specific CD8 T cells before and after non-myeloablative lympho-depleting chemotherapy of melanoma patients. Despite more advanced T cell differentiation, patients T cells showed clonal composition comparable to healthy individuals, sharing a preference for TRBV20 and TRBV29 gene segment usage and several co-dominant public TCR clonotypes. Moreover, our data revealed the presence of relatively few dominant EBV antigen-specific T cell clonotypes, which mostly persisted following transient lympho-depletion (TLD) and lymphocyte recovery, likely related to absence of EBV reactivation and de novo T cell priming in these patients. Interestingly, persisting clonotypes frequently co-expressed memory/homing-associated genes (CD27, IL7R, EOMES, CD62L/SELL and CCR5) supporting the notion that they are particularly important for long-lasting CD8 T cell responses. Nevertheless, the clonal composition of EBV-specific CD8 T cells was preserved over time with the presence of the same dominant clonotypes after non-myeloablative chemotherapy. The observed clonotype persistence demonstrates high robustness of CD8 T cell homeostasis and reconstitution.
doi:10.1371/journal.pone.0078686
PMCID: PMC3808305  PMID: 24205294
24.  The Immunological and Virological Consequences of Planned Treatment Interruptions in Children with HIV Infection 
PLoS ONE  2013;8(10):e76582.
Objectives
To evaluate the immunological and viral consequences of planned treatment interruptions (PTI) in children with HIV.
Design
This was an immunological and virological sub-study of the Paediatric European Network for Treatment of AIDS (PENTA) 11 trial, which compared CD4-guided PTI of antiretroviral therapy (ART) with continuous therapy (CT) in children.
Methods
HIV-1 RNA and lymphocyte subsets, including CD4 and CD8 cells, were quantified on fresh samples collected during the study; CD45RA, CD45RO and CD31 subpopulations were evaluated in some centres. For 36 (18 PTI, 18 CT) children, immunophenotyping was performed and cell-associated HIV-1 DNA analysed on stored samples to 48 weeks.
Results
In the PTI group, CD4 cell count fell rapidly in the first 12 weeks off ART, with decreases in both naïve and memory cells. However, the proportion of CD4 cells expressing CD45RA and CD45RO remained constant in both groups. The increase in CD8 cells in the first 12 weeks off ART in the PTI group was predominantly due to increases in RO-expressing cells. PTI was associated with a rapid and sustained increase in CD4 cells expressing Ki67 and HLA-DR, and increased levels of HIV-1 DNA.
Conclusions
PTI in children is associated with rapid changes in CD4 and CD8 cells, likely due to increased cell turnover and immune activation. However, children off treatment may be able to maintain stable levels of naïve CD4 cells, at least in proportion to the memory cell pool, which may in part explain the observed excellent CD4 cell recovery with re-introduction of ART.
doi:10.1371/journal.pone.0076582
PMCID: PMC3806774  PMID: 24194841
25.  Endoplasmic Reticulum Stress, Unfolded Protein Response and Altered T Cell Differentiation in Necrotizing Enterocolitis  
PLoS ONE  2013;8(10):e78491.
Background
Endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR) play important roles in chronic intestinal inflammation. Necrotizing enterocolitis (NEC) is the most common gastrointestinal emergency in preterm infants and is characterized by acute intestinal inflammation and necrosis. The objective of the study is to investigate the role of ER stress and the UPR in NEC patients.
Methods
Ileal tissues from NEC and control patients were obtained during surgical resection and/or at stoma closure. Splicing of XBP1 was detected using PCR, and gene expression was quantified using qPCR and Western blot.
Results
Splicing of XBP1 was only detected in a subset of acute NEC (A-NEC) patients, and not in NEC patients who had undergone reanastomosis (R-NEC). The other ER stress and the UPR pathways, PERK and ATF6, were not activated in NEC patients. A-NEC patients showing XBP1 splicing (A-NEC-XBP1s) had increased mucosal expression of GRP78, CHOP, IL6 and IL8. Similar results were obtained by inducing ER stress and the UPR in vitro. A-NEC-XBP1s patients showed altered T cell differentiation indicated by decreased mucosal expression of RORC, IL17A and FOXP3. A-NEC-XBP1s patients additionally showed more severe morphological damage and a worse surgical outcome. Compared with A-NEC patients, R-NEC patients showed lower mucosal IL6 and IL8 expression and higher mucosal FOXP3 expression.
Conclusions
XBP1 splicing, ER stress and the UPR in NEC are associated with increased IL6 and IL8 expression levels, altered T cell differentiation and severe epithelial injury.
doi:10.1371/journal.pone.0078491
PMCID: PMC3806824  PMID: 24194940

Results 1-25 (534)