Search tips
Search criteria

Results 1-5 (5)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Early detection of antiangiogenic treatment responses in a mouse xenograft tumor model using quantitative perfusion MRI 
Cancer Medicine  2014;3(1):47-60.
Angiogenesis plays a major role in tumor growth and metastasis, with tumor perfusion regarded as a marker for angiogenesis. To evaluate antiangiogenic treatment response in vivo, we investigated arterial spin labeling (ASL) magnetic resonance imaging (MRI) to measure tumor perfusion quantitatively. Chronic and 24-h acute treatment responses to bevacizumab were assessed by ASL and dynamic-contrast-enhanced (DCE) MRI in the A498 xenograft mouse model. After the MRI, tumor vasculature was assessed by CD34 staining. After 39 days of chronic treatment, tumor perfusion decreased to 44.8 ± 16.1 mL/100 g/min (P < 0.05), compared to 92.6 ± 42.9 mL/100 g/min in the control group. In the acute treatment study, tumor perfusion in the treated group decreased from 107.2 ± 32.7 to 73.7 ± 27.8 mL/100 g/min (P < 0.01; two-way analysis of variance), as well as compared with control group post dosing. A significant reduction in vessel density and vessel size was observed after the chronic treatment, while only vessel size was reduced 24 h after acute treatment. The tumor perfusion correlated with vessel size (r = 0.66; P < 0.005) after chronic, but not after acute treatment. The results from DCE-MRI also detected a significant change between treated and control groups in both chronic and acute treatment studies, but not between 0 and 24 h in the acute treatment group. These results indicate that tumor perfusion measured by MRI can detect early vascular responses to antiangiogenic treatment. With its noninvasive and quantitative nature, ASL MRI would be valuable for longitudinal assessment of tumor perfusion and in translation from animal models to human.
PMCID: PMC3930389  PMID: 24403176
Angiogenesis; arterial spin labeling; blood flow; dynamic-contrast enhanced MRI; magnetic resonance imaging; tumor; xenograft
2.  Ensuring good quality rna for quantitative real-time pcr isolated from renal proximal tubular cells using laser capture microdissection 
BMC Research Notes  2014;7:62.
In order to provide gene expression profiles of different cell types, the primary step is to isolate the specific cells of interest via laser capture microdissection (LCM), followed by extraction of good quality total RNA sufficient for quantitative real-time polymerase chain reaction (qPCR) analysis. This LCM-qPCR strategy has allowed numerous gene expression studies on specific cell populations, providing valuable insights into specific cellular changes in diseases. However, such strategy imposed challenges as cells of interests are often available in limited quantities and quality of RNA may be compromised during long periods of time spent on collection of cells and extraction of total RNA; therefore, it is crucial that protocols for sample preparation should be optimised according to different cell populations.
We made several modifications to existing protocols to improve the total RNA yield and integrity for downstream qPCR analyses. A modified condensed hematoxylin and eosin (H&E) staining protocol was developed for the identification of rat renal proximal tubular cells (PTCs). It was then determined that a minimal of eight thousands renal PTCs were required to meet the minimal total RNA yield required for downstream qPCR. RNA integrity was assessed using at every progressive step of sample preparation. Therefore, we decided that the shortened H&E staining, together with microdissection should be performed consecutively within twenty minutes for good quality for gene expression analysis. These modified protocols were later applied on six individual rat samples. A panel of twenty rat renal drug transporters and five housekeeping genes showed Ct values below thirty-five, confirming the expression levels of these drug transporters can be detected.
We had successfully optimized the protocols to achieve sufficient good quality total RNA from microdissected rat renal PTCs for gene expression profiling via qPCR. This protocol may be suitable for researchers who are interested in employing similar applications for gene expression studies.
PMCID: PMC3905289  PMID: 24467986
3.  Selenium and Selenoprotein Deficiencies Induce Widespread Pyogranuloma Formation in Mice, while High Levels of Dietary Selenium Decrease Liver Tumor Size Driven by TGFα 
PLoS ONE  2013;8(2):e57389.
Changes in dietary selenium and selenoprotein status may influence both anti- and pro-cancer pathways, making the outcome of interventions different from one study to another. To characterize such outcomes in a defined setting, we undertook a controlled hepatocarcinogenesis study involving varying levels of dietary selenium and altered selenoprotein status using mice carrying a mutant (A37G) selenocysteine tRNA transgene (TrsptG37) and/or a cancer driver TGFα transgene. The use of TrsptG37 altered selenoprotein expression in a selenoprotein and tissue specific manner and, at sufficient dietary selenium levels, separate the effect of diet and selenoprotein status. Mice were maintained on diets deficient in selenium (0.02 ppm selenium) or supplemented with 0.1, 0.4 or 2.25 ppm selenium or 30 ppm triphenylselenonium chloride (TPSC), a non-metabolized selenium compound. TrsptG37 transgenic and TGFα/TrsptG37 bi-transgenic mice subjected to selenium-deficient or TPSC diets developed a neurological phenotype associated with early morbidity and mortality prior to hepatocarcinoma development. Pathology analyses revealed widespread disseminated pyogranulomatous inflammation. Pyogranulomas occurred in liver, lungs, heart, spleen, small and large intestine, and mesenteric lymph nodes in these transgenic and bi-transgenic mice. The incidence of liver tumors was significantly increased in mice carrying the TGFα transgene, while dietary selenium and selenoprotein status did not affect tumor number and multiplicity. However, adenoma and carcinoma size and area were smaller in TGFα transgenic mice that were fed 0.4 and 2.25 versus 0.1 ppm of selenium. Thus, selenium and selenoprotein deficiencies led to widespread pyogranuloma formation, while high selenium levels inhibited the size of TGFα–induced liver tumors.
PMCID: PMC3583866  PMID: 23460847
4.  Visualization and Identification of IL-7 Producing Cells in Reporter Mice 
PLoS ONE  2009;4(11):e7637.
Interleukin-7 (IL-7) is required for lymphocyte development and homeostasis although the actual sites of IL-7 production have never been clearly identified. We produced a bacterial artificial chromosome (BAC) transgenic mouse expressing ECFP in the Il7 locus. The construct lacked a signal peptide and ECFP (enhanced cyan fluorescent protein ) accumulated inside IL-7-producing stromal cells in thoracic thymus, cervical thymus and bone marrow. In thymus, an extensive reticular network of IL-7-containing processes extended from cortical and medullary epithelial cells, closely contacting thymocytes. Central memory CD8 T cells, which require IL-7 and home to bone marrow, physically associated with IL-7-producing cells as we demonstrate by intravital imaging.
PMCID: PMC2770321  PMID: 19907640

Results 1-5 (5)