Search tips
Search criteria

Results 1-20 (20)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Immunotherapy Against HPV16/18 Generates Potent TH1 and Cytotoxic Cellular Immune Responses 
Science translational medicine  2012;4(155):155ra138.
Despite the development of highly effective prophylactic vaccines against human papillomavirus (HPV) serotypes 16 and 18, prevention of cervical dysplasia and cancer in women infected with high-risk HPV serotypes remains an unmet medical need. We report encouraging phase 1 safety, tolerability, and immunogenicity results for a therapeutic HPV16/18 candidate vaccine, VGX-3100, delivered by in vivo electroporation (EP). Eighteen women previously treated for cervical intraepithelial neoplasia grade 2 or 3 (CIN2/3) received a three-dose (intramuscular) regimen of highly engineered plasmid DNA encoding HPV16 and HPV18 E6/E7 antigens followed by EP in a dose escalation study (0.3, 1, and 3 mg per plasmid). Immunization was well tolerated with reports of mild injection site reactions and no study-related serious or grade 3 and 4 adverse events. No dose-limiting toxicity was noted, and pain was assessed by visual analog scale, with average scores decreasing from 6.2/10 to 1.4 within 10 min. Average peak interferon-g enzyme-linked immunospot magnitudes were highest in the 3 mg cohort in comparison to the 0.3 and 1 mg cohorts, suggesting a trend toward a dose effect. Flow cytometric analysis revealed the induction of HPV-specific CD8+ T cells that efficiently loaded granzyme B and perforin and exhibited full cytolytic functionality in all cohorts. These data indicate that VGX-3100 is capable of driving robust immune responses to antigens from high-risk HPV serotypes and could contribute to elimination of HPV-infected cells and subsequent regression of the dysplastic process.
PMCID: PMC4317299  PMID: 23052295
3.  Alarmin IL-33 acts as an immunoadjuvant for enhancing antigen-specific cell-mediated immunity resulting in potent anti-tumor immunity 
Cancer research  2014;74(6):1789-1800.
Interleukin 33 (IL-33) has emerged as a cytokine that can exhibit pleiotropic properties. Here we examine IL-33 for its immunoadjuvant effects in an HPV-associated cancer immune therapy model in which cell-mediated immunity is critical for protection. It is known that two biologically active forms of IL-33 exist: full-length IL-33 and mature IL-33. The potential ability of both isoforms to act as vaccine adjuvants to influence the CD4 Th1 and CD8 T cell immune responses has not been well defined. We show that both isoforms of IL-33 are capable of enhancing potent antigen (Ag)-specific effector and memory T cell immunity in vivo in a DNA vaccine setting. We also show that while both forms of IL-33 drove robust IFN-γ responses, neither form drove high secretion of IL-4 or any elevation of IgE levels. Moreover, both isoforms augmented vaccine-induced Ag-specific polyfunctional CD4+ and CD8+ T cell responses, with a large proportion of CD8+ T cells undergoing cytolytic plurifunctional degranulation. Therapeutic studies indicated that established TC-1-bearing mice undergo rapid and complete regression after therapeutic vaccination with both IL-33 adjuvant isoforms used in conjunction with an HPV DNA vaccine. Furthermore, using the P14 transgenic mouse model, we show that IL-33 can significantly expand the magnitude of Ag-specific CD8+ T cell responses and elicit bonafide effector-memory CD8+ T cells. Overall, the data suggests the potential use of these two IL-33 isoforms as immunoadjuvant candidates in future vaccination against other pathogens and in the context of anti-tumor immune-based therapy.
PMCID: PMC4130175  PMID: 24448242
IL-33; adjuvant; HPV; DNA Vaccine; anti-tumor immunity
4.  Cognitive effects of testosterone and finasteride administration in older hypogonadal men 
Serum concentrations of neuroactive androgens decline in older men and, in some studies, low testosterone is associated with decreased cognitive function and incidence of depression. Existing studies evaluating the effect of testosterone administration on cognition in older men have been largely inconclusive, with some studies reporting minor to moderate cognitive benefit, while others indicate no cognitive effect. Our objective was to assess the cognitive effects of treating older hypogonadal men for 1 year with a supraphysiological dose of testosterone, either alone or in combination with finasteride (a type II 5α-reductase inhibitor), in order to determine whether testosterone produces cognitive benefit and whether suppressed dihydrotestosterone influences cognition. Sixty men aged ≥60 years with a serum testosterone concentration of ≤300 ng/dL or bioavailable testosterone ≤70 ng/dL and no evidence of cognitive impairment received testosterone-enanthate (125 mg/week) versus vehicle, paired with finasteride (5 mg/day) versus placebo using a 2×2 factorial design. Testosterone caused a small decrease in depressive symptoms as assessed by the Geriatric Depression Scale and a moderate increase in visuospatial memory as assessed by performance on a recall trial of the Rey-Osterrieth Complex Figure Test. Finasteride caused a small increase in performance on the Benton Judgment of Line Orientation test. In total, major improvements in cognition were not observed either with testosterone or finasteride. Further studies are warranted to determine if testosterone replacement may improve cognition in other domains.
PMCID: PMC4136953  PMID: 25143719
cognition; depression; 5 alpha reductase; testosterone enanthate
5.  Highly optimized DNA vaccine targeting human telomerase reverse transcriptase stimulates potent antitumor immunity 
Cancer immunology research  2013;1(3):179-189.
High levels of human Telomerase Reverse Transcriptase (hTERT) are detected in over 85% of human cancers. Immunological analysis supports hTERT is a widely applicable target recognized by T cells and can be potentially studied as a broad cancer immune therapeutic, or a unique line of defense against tumor recurrence. There remains an urgent need to develop more potent hTERT vaccines. Here, a synthetic highly optimized full-length hTERT DNA vaccine (phTERT) was designed and the induced immunity was examined in mice and non-human primates. When delivered by electroporation, phTERT elicited strong, broad hTERT-specific CD8 responses including induction of T-cells expressing CD107a, IFN-γ and TNF-α in mice. The ability of phTERT to overcome tolerance was evaluated in a NHP model, whose TERT is 96% homologous to that of hTERT. Immunized monkeys exhibited robust (average 1834 SFU/106 PBMCs), diverse (multiple immunodominant epitopes) IFN-γ responses and antigen-specific perforin release (average 332 SFU/106 PBMCs), suggesting phTERT breaks tolerance and induces potent cytotoxic responses in this human relevant model. Moreover, in an HPV16-associated tumor model, vaccination of phTERT slows tumor growth and improves survival rate in both prophylactic and therapeutic studies. Lastly, in vivo cytotoxicity assay confirmed that phTERT-induced CD8 T cells exhibited specific CTL activity, capable of eliminating hTERT-pulsed target cells. These findings support that this synthetic EP-delivered DNA phTERT may have a role as a broad therapeutic cancer vaccine candidate.
PMCID: PMC4096936  PMID: 24777680
6.  Intramuscular Therapeutic Vaccination Targeting HPV16 Induces T Cell Responses That Localize in Mucosal Lesions 
Science translational medicine  2014;6(221):221ra13.
About 25% of high-grade cervical intraepithelial neoplasias (CIN2/3) caused by human papillomavirus serotype 16 (HPV16) undergo complete spontaneous regression. However, to date, therapeutic vaccination strategies for HPV disease have yielded limited success when measured by their ability to induce robust peripheral blood T cell responses to vaccine antigen. We report marked immunologic changes in the target lesion microenvironment after intramuscular therapeutic vaccination targeting HPV16 E6/E7 antigens, in subjects with CIN2/3 who had modest detectable responses in circulating T lymphocytes. Histologic and molecular changes, including markedly (average threefold) increased intensity of CD8+ T cell infiltrates in both the stromal and epithelial compartments, suggest an effector response to vaccination. Postvaccination cervical tissue immune infiltrates included organized tertiary lymphoid-like structures in the stroma subjacent to residual intraepithelial lesions and, unlike infiltrates in unvaccinated lesions, showed evidence of proliferation induced by recognition of cognate antigen. At a molecular level, these histologic changes in the stroma were characterized by increased expression of genes associated with immune activation (CXCR3) and effector function (Tbet and IFNβ), and were also associated with an immunologic signature in the overlying dysplastic epithelium. High-throughput T cell receptor sequencing of unmanipulated specimens identified clonal expansions in the tissue that were not readily detectable in peripheral blood. Together, these findings indicate that peripheral therapeutic vaccination to HPV antigens can induce a robust tissue-localized effector immune response, and that analyses of immune responses at sites of antigen are likely to be much more informative than analyses of cells that remain in the circulation.
PMCID: PMC4086631  PMID: 24477000
7.  Peripheral immunization induces functional intrahepatic Hepatitis C specific immunity following selective retention of vaccine-specific CD8 T cells by the liver 
Human Vaccines  2011;7(12):1326-1335.
It is believed that an effective HCV vaccine must induce strong HCV-specific cytotoxic IFNγ+ CD8+ T cells able to migrate into and become fully activated within the liver, an organ known to suppress T-cell responses and induce tolerance. Given the importance of intrahepatic HCV-specific T cells in the clearance of acute infection, the goal of this present study was to determine if peripheral immunization was able to induce functional intrahepatic HCV-specific T cell-based immunity both in the presence and absence of HCV antigen expression within the liver. Using a novel HCV NS3/NS4A DNA vaccine, we show that peripheral immunization of C57BL/6 mice results in the formation of a large pool of fully functional HCV-specific cytotoxic IFNγ+ CD8+ T cells within the liver and that these cells were highly enriched within the liver as compared with the spleen. Following hepatic expression of cognate HCV antigen using a previously described liver transfection method, we show that this pool of vaccine-induced HCV-specific CD8+ T cells retained its ability to become highly activated as shown by the upregulation of IFNγ and CCR5 expression, as well as by the clearance of HCV NS3 expressing hepatocytes. Taken together, these findings suggest that T-cell effector function is preserved within the liver and that selective recruitment of antigen-specific T cells to the liver may play a previously unappreciated role in the process of immune surveillance, which may be exploited for future T cell-based HCV vaccines.
PMCID: PMC3338931  PMID: 22108033
HCV DNA vaccine; NS3; NS4A; liver transfection; consensus
8.  A highly optimized DNA vaccine confers complete protective immunity against high-dose lethal lymphocytic choriomeningitis virus challenge 
Vaccine  2011;29(39):6755-6762.
Protection against infection is the hallmark of immunity and the basis of effective vaccination. For a variety of reasons there is a great demand to develop new, safer and more effective vaccine platforms. In this regard, while ‘first-generation’ DNA vaccines were poorly immunogenic, new genetic ‘optimization’ strategies and the application of in vivo electroporation (EP) have dramatically boosted their potency. We developed a highly optimized plasmid DNA vaccine that expresses the lymphocytic choriomeningitis virus (LCMV) nucleocapsid protein (NP) and evaluated it using the LCMV challenge model, a gold standard for studying infection and immunity. When administered intramuscularly with EP, robust NP-specific cellular and humoral immune responses were elicited, the magnitudes of which approached those following acute LCMV infection. Furthermore, these responses were capable of providing 100% protection against a high-dose, normally lethal virus challenge. This is the first non-infectious vaccine conferring complete protective immunity up to eight weeks after vaccination and demonstrates the potential utility of ‘next-generation’ DNA vaccines.
PMCID: PMC3167034  PMID: 21238574
DNA vaccine; electroporation; protection; LCMV; T cell; antibody
9.  Clinical Applications of DNA Vaccines: Current Progress 
Early DNA vaccines were very exciting in small animals, but poorly immunogenic in large animals and humans. Recently, much progress has been made regarding increasing their immune potency. This review summarizes many of these technological advancements and discusses the current status and prospects of DNA vaccines in the clinic targeting specific pathogens.
It was discovered almost 20 years ago that plasmid DNA, when injected into the skin or muscle of mice, could induce immune responses to encoded antigens. Since that time, there has since been much progress in understanding the basic biology behind this deceptively simple vaccine platform and much technological advancement to enhance immune potency. Among these advancements are improved formulations and improved physical methods of delivery, which increase the uptake of vaccine plasmids by cells; optimization of vaccine vectors and encoded antigens; and the development of novel formulations and adjuvants to augment and direct the host immune response. The ability of the current, or second-generation, DNA vaccines to induce more-potent cellular and humoral responses opens up this platform to be examined in both preventative and therapeutic arenas. This review focuses on these advances and discusses both preventive and immunotherapeutic clinical applications.
PMCID: PMC3202319  PMID: 21765081
10.  Immune Modulation through 4-1BB Enhances SIV Vaccine Protection in Non-Human Primates against SIVmac251 Challenge 
PLoS ONE  2011;6(9):e24250.
Costimulatory molecules play a central role in the development of cellular immunity. Understanding how costimulatory pathways can be directed to positively influence the immune response may be critical for the generation of an effective HIV vaccine. Here, we evaluated the ability of intravenous administration of a blocking monoclonal antibody (mAb) directed against the negative costimulatory molecule CTLA-4, and an agonist mAb directed against the positive costimulatory molecule 4-1BB, either alone or in combination, to augment intramuscular SIV DNA immunizations. We then tested the ability these of these responses to impact a high-dose SIVmac251 challenge. Following immunization, the groups infused with the anti-4-1BB mAb exhibited enhanced IFN-γ responses compared to the DNA vaccine only group. Interestingly, although CTLA-4 blockade alone did not enhance IFN-γ responses it did increase the proliferative capacity of the CD4+ and CD8+ T cells. The combination of both mAbs enhanced the magnitude of the polyfunctional CD8+ T cell response. Following challenge, the group that received both mAbs exhibited a significant, ∼2.0 log, decrease in plasma viral load compared to the naïve group the included complete suppression of viral load in some animals. Furthermore, the use of the CTLA-4 blocking antibody resulted in significantly higher viral loads during chronic infection compared to animals that received the 4-1BB mAb, likely due to the higher CD4+ T cell proliferative responses which were driven by this adjuvant following immunization. These novel studies show that these adjuvants induce differential modulation of immune responses, which have dramatically different consequences for control of SIV replication, suggesting important implications for HIV vaccine development.
PMCID: PMC3174159  PMID: 21935390
11.  Circulating Nef Induces Dyslipidemia in SIV-Infected Macaques by Suppressing Cholesterol Efflux 
The Journal of infectious diseases  2010;202(4):614-623.
HIV infection and subsequent antiretroviral therapy have been associated with an increased incidence of dyslipidemia and cardiovascular disease and has been shown to suppress cholesterol efflux from virus-infected macrophages by inducing Nef-dependent downregulation of ABCA1. The SIV/macaque model was used to examine consequences and mechanisms involved. SIV infection drove a significant remodeling of high-density lipoprotein profiles suggesting systemic inhibition of the ABCA1-dependent reverse cholesterol transport pathway. The ABCA1 cholesterol transporter was significantly down regulated in the livers of the SIV-infected macaques and the viral protein Nef could be detected in the liver as well as in plasma of infected animals. Extracellular myristoylated HIV Nef inhibited cholesterol efflux from macrophages and hepatocytes. Moreover, sera from SIV-infected macaques also suppressed cholesterol efflux in a Nef-dependent fashion. These results indicate that SIV infection is a significant contributor to primary dyslipidemia, likely through the ability of Nef to suppress ABCA1-dependent reverse cholesterol transport.
PMCID: PMC2932757  PMID: 20617930
HIV; SIV; ABCA1; Nef; atherosclerosis
12.  Unique Th1/Th2 Phenotypes Induced during Priming and Memory Phases by Use of Interleukin-12 (IL-12) or IL-28B Vaccine Adjuvants in Rhesus Macaques ▿  
Clinical and Vaccine Immunology : CVI  2010;17(10):1493-1499.
Adjuvant compounds are usually included in vaccinations in order to bolster total vaccine-specific responses or to tailor an immune response toward a desired endpoint, such as the production of gamma interferon or an increase in antibody titers. While most adjuvants are studied in regard to their impact on vaccine-specific responses during and just after the vaccination period, a detailed analysis of how adjuvants skew the Th1/Th2 axis at more distant time points is not often undertaken. In the current study, we present data that suggests that adjuvants differ in their relative abilities to bolster and skew immune responses in the short term compared with more distant time points. To that end, we have employed interleukin-12 (IL-12) and IL-28B as adjuvants for DNA vaccination of rhesus macaques. While both adjuvants were able to bolster Th1-biased responses, our analysis shows that this skewing was achieved through different mechanisms. Moreover, analysis 3 months after the final immunization revealed the activity of the IL-12 adjuvant to be short lived, while the IL-28B adjuvant continued to exert its influence on the immune system. Taken together, these data suggest that the scientific and medical communities would benefit from a more detailed analysis of adjuvant function, including the determination of long-term influences of administered adjuvants.
PMCID: PMC2952990  PMID: 20685940
13.  Ki-67 staining for determination of rhesus macaque T cell proliferative responses ex vivo1 
The capacity for robust proliferation upon re-infection is a hallmark of adaptive immunity and the basis of vaccination. A widely used animal model for the study of human disease is the rhesus macaque (RM), where capacity for proliferation can be assessed ex vivo using carboxyfluorescein succinimidyl ester (CFSE)-based dilution assays. However, we show over the course of the standard ex vivo proliferation assay that CFSE-labeling at commonly-used dye concentrations induces significant cell death, but that this phenomenon is dose-dependent. Here we describe an alternative, semi-quantitative method for estimating T cell proliferative responses that avoids the putative biases associated with chemical modification. RM peripheral blood mononuclear cells were stimulated ex vivo with cognate peptides for five days, immunostained for intracellular Ki-67, and then analyzed by flow cytometry. We describe a gating strategy using Ki-67 and side light scatter, also a marker of blastogenesis, which correlates strongly with data from CFSE dilution. We show that this method is a valid tool for measuring RM antigen-specific cellular proliferation ex vivo and can be used as an alternative to CFSE dilution assays.
PMCID: PMC2939446  PMID: 20104580
T cell; Ki-67; CFSE; CFDA-SE; rhesus macaque; proliferation assay
14.  Identification of a Potential Pharmacological Sanctuary for HIV Type 1 in a Fraction of CD4+ Primary Cells 
We have identified a subset of HIV-susceptible CD4+CCR5+ cells in human PBMCs that can efficiently exclude protease inhibitors (PI) due to high P-glycoprotein (P-gp) efflux activity. Phenotypically these cells are heterogeneous, include both T and non-T cells, and some display markers of memory cells. Cells with high P-gp represent 16–56% (median = 37.3) of all CD4+CCR5+ cells in healthy donors, and are selectively depleted in HIV-1-infected individuals (4.1–33%, median = 10.1). A fraction of primary cells productively infected by HIV-1, in vitro, have high P-gp pump activity, demonstrating that infection does not inhibit P-gp function. In agreement with these data, HIV-susceptible cells expressing high levels of P-gp require higher levels of PI for complete inhibition of virus spread. We conclude that the PI concentrations achieved in plasma could be suboptimal for full inhibition of virus spread in high P-gp cells, indicating that they may represent a pharmacological sanctuary for HIV-1.
PMCID: PMC2858927  PMID: 20059395
15.  Plasmid-Encoded Interleukin-15 Receptor α Enhances Specific Immune Responses Induced by a DNA Vaccine In Vivo 
Human Gene Therapy  2009;20(10):1143-1156.
Plasmid-encoded DNA vaccines appear to be a safe and effective method for delivering antigen; however, the immunogenicity of such vaccines is often suboptimal. Cytokine adjuvants including interleukin (IL)-12, RANTES, granulocyte-macrophage colony-stimulating factor, IL-15, and others have been used to augment the immune response against DNA vaccines. In particular, IL-15 binds to a unique high-affinity receptor, IL-15Rα; is trans-presented to CD8+ T cells expressing the common βγ chain; and has been shown to play a role in the generation, maintenance, and proliferation of antigen-specific CD8+ T cells. In this study, we took the unique approach of using both a cytokine and its receptor as an adjuvant in an HIV-1 vaccine strategy. To study IL-15Rα expression, a unique monoclonal antibody (KK1.23) was generated to confirm receptor expression in vitro. Coimmunization of IL-15 and IL-15Rα plasmids with HIV-1 antigenic plasmids in mice enhanced the antigen-specific immune response 2-fold over IL-15 immunoadjuvant alone. Furthermore, plasmid-encoded IL-15Rα augments immune responses in the absence of IL-15, suggesting its role as a novel adjuvant. Moreover, pIL-15Rα enhanced the cellular, but not the humoral, immune response as measured by antigen-specific IgG antibody. This is the first report describing that IL-15Rα itself can act as an adjuvant by enhancing an antigen-specific T cell response. Uniquely, pIL-15 and pIL-15Rα adjuvants combined, but not the receptor α chain alone, may be useful as a strategy for generating and maintaining memory CD8+ T cells in a DNA vaccine.
PMCID: PMC2829284  PMID: 19530914
16.  Visualization and Identification of IL-7 Producing Cells in Reporter Mice 
PLoS ONE  2009;4(11):e7637.
Interleukin-7 (IL-7) is required for lymphocyte development and homeostasis although the actual sites of IL-7 production have never been clearly identified. We produced a bacterial artificial chromosome (BAC) transgenic mouse expressing ECFP in the Il7 locus. The construct lacked a signal peptide and ECFP (enhanced cyan fluorescent protein ) accumulated inside IL-7-producing stromal cells in thoracic thymus, cervical thymus and bone marrow. In thymus, an extensive reticular network of IL-7-containing processes extended from cortical and medullary epithelial cells, closely contacting thymocytes. Central memory CD8 T cells, which require IL-7 and home to bone marrow, physically associated with IL-7-producing cells as we demonstrate by intravital imaging.
PMCID: PMC2770321  PMID: 19907640
17.  A Splenic Marginal Zone-Like Peripheral Blood CD27+B220− B Cell Population Is Preferentially Depleted in HIV Type 1-Infected Individuals 
Peripheral blood CD27+ B cells are reduced in HIV-1-infected individuals. In healthy individuals, the human peripheral blood CD27+ B cell pool consists of two subsets defined by the expression, or lack thereof, of the CD45 isoform B220. We investigated the presence of circulating B220+ and B220− memory B cells in HIV+ individuals and found that the reduction in CD27+ memory B cells occurs primarily among CD27+B220− B cells. Studies conducted using healthy controls indicate that CD27+B220− B cells have a splenic marginal zone like the immunophenotype IgMhiIgDloCD21+CD23−, express TLR9, and proliferate and secrete IgG and IgM in response to B cell-specific ODN. CD27+B220+ B cells have the immunophenotype IgMloIgDhiCD21+CD23+, express activation-induced cytidine deaminase, and proliferate in response to SAC but do not secrete immunoglobulin. The AICD expression, along with CD86 expression, by CD27+B220+ suggests these cells are of germinal center origin. The preferential depletion of CD27+B220− B cells mirrors alterations in spleen morphology and resident B cell populations due to HIV infection reported by other investigators and may play an important role in the defective B cell immunity against T-independent pathogens such as pneumococcus observed in HIV-1-infected individuals.
PMCID: PMC2716037  PMID: 18426338
20.  Human Immunodeficiency Virus Impairs Reverse Cholesterol Transport from Macrophages 
PLoS Biology  2006;4(11):e365.
Several steps of HIV-1 replication critically depend on cholesterol. HIV infection is associated with profound changes in lipid and lipoprotein metabolism and an increased risk of coronary artery disease. Whereas numerous studies have investigated the role of anti-HIV drugs in lipodystrophy and dyslipidemia, the effects of HIV infection on cellular cholesterol metabolism remain uncharacterized. Here, we demonstrate that HIV-1 impairs ATP-binding cassette transporter A1 (ABCA1)-dependent cholesterol efflux from human macrophages, a condition previously shown to be highly atherogenic. In HIV-1–infected cells, this effect was mediated by Nef. Transfection of murine macrophages with Nef impaired cholesterol efflux from these cells. At least two mechanisms were found to be responsible for this phenomenon: first, HIV infection and transfection with Nef induced post-transcriptional down-regulation of ABCA1; and second, Nef caused redistribution of ABCA1 to the plasma membrane and inhibited internalization of apolipoprotein A-I. Binding of Nef to ABCA1 was required for down-regulation and redistribution of ABCA1. HIV-infected and Nef-transfected macrophages accumulated substantial amounts of lipids, thus resembling foam cells. The contribution of HIV-infected macrophages to the pathogenesis of atherosclerosis was supported by the presence of HIV-positive foam cells in atherosclerotic plaques of HIV-infected patients. Stimulation of cholesterol efflux from macrophages significantly reduced infectivity of the virions produced by these cells, and this effect correlated with a decreased amount of virion-associated cholesterol, suggesting that impairment of cholesterol efflux is essential to ensure proper cholesterol content in nascent HIV particles. These results reveal a previously unrecognized dysregulation of intracellular lipid metabolism in HIV-infected macrophages and identify Nef and ABCA1 as the key players responsible for this effect. Our findings have implications for pathogenesis of both HIV disease and atherosclerosis, because they reveal the role of cholesterol efflux impairment in HIV infectivity and suggest a possible mechanism by which HIV infection of macrophages may contribute to increased risk of atherosclerosis in HIV-infected patients.
HIV1-Nef impairs ABCA1-dependent cholesterol efflux from infected macrophages, promoting the transformation of virally infected macrophages into foam cells (a condition that may put HIV patients at risk for atherosclerosis).
PMCID: PMC1629034  PMID: 17076584

Results 1-20 (20)