PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  NANOG Modulates Stemness in Human Colorectal Cancer 
Oncogene  2012;32(37):4397-4405.
NANOG is a stem cell transcription factor that is essential for embryonic development, reprogramming normal adult cells and malignant transformation and progression. The nearly identical retrogene NANOGP8 is expressed in multiple cancers, but generally not in normal tissues and its function is not well defined. Our postulate is that NANOGP8 directly modulates the stemness of individual human colorectal carcinoma (CRC) cells. Stemness was measured in vitro as the spherogenicity of single CRC cells in serum free medium and the size of the side population and in vivo as tumorigenicity and experimental metastatic potential in NOD/SCID mice. We found that 80% of clinical liver metastases express a NANOG with 75% of the positive metastases containing NANOGP8 transcripts. 3 to 62% of single cells within 6 CRC lines form spheroids in serum free medium in suspension. NANOGP8 is translated into protein. The relative expression of a NANOG gene increased 8–122 fold during spheroid formation, more than the increase in OCT4 or SOX2 transcripts with NANOGP8 the more prevalent family member. shRNA to NANOG not only inhibits spherogenicity but also reduces expression of OCT4 and SOX2, the size of the side population and tumor growth in vivo. Inhibition of NANOG gene expression is associated with inhibition of proliferation and decreased phosphorylation of G2-related cell cycle proteins. Overexpression of NANOGP8 rescues single cell spherogenicity when NANOG gene expression is inhibited and increases the side population in CRC. Thus, NANOGP8 can substitute for NANOG in directly promoting stemness in CRC.
doi:10.1038/onc.2012.461
PMCID: PMC3556342  PMID: 23085761
NANOG; NANOGP8; stemness; colorectal cancer; cancer stem cell
2.  Visualization and Identification of IL-7 Producing Cells in Reporter Mice 
PLoS ONE  2009;4(11):e7637.
Interleukin-7 (IL-7) is required for lymphocyte development and homeostasis although the actual sites of IL-7 production have never been clearly identified. We produced a bacterial artificial chromosome (BAC) transgenic mouse expressing ECFP in the Il7 locus. The construct lacked a signal peptide and ECFP (enhanced cyan fluorescent protein ) accumulated inside IL-7-producing stromal cells in thoracic thymus, cervical thymus and bone marrow. In thymus, an extensive reticular network of IL-7-containing processes extended from cortical and medullary epithelial cells, closely contacting thymocytes. Central memory CD8 T cells, which require IL-7 and home to bone marrow, physically associated with IL-7-producing cells as we demonstrate by intravital imaging.
doi:10.1371/journal.pone.0007637
PMCID: PMC2770321  PMID: 19907640

Results 1-2 (2)