PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (52)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
more »
Document Types
1.  Mice Carrying a Hypomorphic Evi1 Allele Are Embryonic Viable but Exhibit Severe Congenital Heart Defects 
PLoS ONE  2014;9(2):e89397.
The ecotropic viral integration site 1 (Evi1) oncogenic transcription factor is one of a number of alternative transcripts encoded by the Mds1 and Evi1 complex locus (Mecom). Overexpression of Evi1 has been observed in a number of myeloid disorders and is associated with poor patient survival. It is also amplified and/or overexpressed in many epithelial cancers including nasopharyngeal carcinoma, ovarian carcinoma, ependymomas, and lung and colorectal cancers. Two murine knockout models have also demonstrated Evi1's critical role in the maintenance of hematopoietic stem cell renewal with its absence resulting in the death of mutant embryos due to hematopoietic failure. Here we characterize a novel mouse model (designated Evi1fl3) in which Evi1 exon 3, which carries the ATG start, is flanked by loxP sites. Unexpectedly, we found that germline deletion of exon3 produces a hypomorphic allele due to the use of an alternative ATG start site located in exon 4, resulting in a minor Evi1 N-terminal truncation and a block in expression of the Mds1-Evi1 fusion transcript. Evi1δex3/δex3 mutant embryos showed only a mild non-lethal hematopoietic phenotype and bone marrow failure was only observed in adult Vav-iCre/+, Evi1fl3/fl3 mice in which exon 3 was specifically deleted in the hematopoietic system. Evi1δex3/δex3 knockout pups are born in normal numbers but die during the perinatal period from congenital heart defects. Database searches identified 143 genes with similar mutant heart phenotypes as those observed in Evi1δex3/δex3 mutant pups. Interestingly, 42 of these congenital heart defect genes contain known Evi1-binding sites, and expression of 18 of these genes are also effected by Evi1 siRNA knockdown. These results show a potential functional involvement of Evi1 target genes in heart development and indicate that Evi1 is part of a transcriptional program that regulates cardiac development in addition to the development of blood.
doi:10.1371/journal.pone.0089397
PMCID: PMC3937339  PMID: 24586749
2.  Musashi1-CreERT2: A New Cre Line for Conditional Mutagenesis in Neural Stem Cells 
Genesis (New York, N.Y. : 2000)  2012;51(2):128-134.
The RNA-binding protein Musashi1 (Msi1) is one of two mammalian homologues of Drosophila Musashi, which is required for the asymmetric cell division of sensory organ precursor cells. In the mouse central nervous system (CNS) Msi1 is preferentially expressed in mitotically active progenitor cells in the ventricular zone (VZ) of the neural tube during embryonic development and in the subventricular zone (SVZ) of the postnatal brain. Previous studies showed that cells in the SVZ can contribute to long-term neurogenesis in the olfactory bulb (OB) but it remains unclear whether Msi1-expressing cells have self-renewing potential and can contribute to neurogenesis in the adult. Here we describe the generation of Msi1-CreERT2 knock-in mice and show by cell lineage tracing that Msi1-CreERT2-expressing cells mark neural stem cells (NSCs) in both the embryonic and adult brain. Msi1-CreERT2 mice thus represent a new tool in our arsenal for genetically manipulating NSCs, which will be essential for understanding the molecular mechanisms underlying neural development.
doi:10.1002/dvg.22357
PMCID: PMC3577968  PMID: 23132814
Msi1; NSCs; SVZ; Olfactory epithelium; Knock-in mice
3.  LIM Domain Only-2 (LMO2) Induces T-Cell Leukemia by Two Distinct Pathways 
PLoS ONE  2014;9(1):e85883.
The LMO2 oncogene is deregulated in the majority of human T-cell leukemia cases and in most gene therapy-induced T-cell leukemias. We made transgenic mice with enforced expression of Lmo2 in T-cells by the CD2 promoter/enhancer. These transgenic mice developed highly penetrant T-ALL by two distinct patterns of gene expression: one in which there was concordant activation of Lyl1, Hhex, and Mycn or alternatively, with Notch1 target gene activation. Most strikingly, this gene expression clustering was conserved in human Early T-cell Precursor ALL (ETP-ALL), where LMO2, HHEX, LYL1, and MYCN were most highly expressed. We discovered that HHEX is a direct transcriptional target of LMO2 consistent with its concordant gene expression. Furthermore, conditional inactivation of Hhex in CD2-Lmo2 transgenic mice markedly attenuated T-ALL development, demonstrating that Hhex is a crucial mediator of Lmo2's oncogenic function. The CD2-Lmo2 transgenic mice offer mechanistic insight into concordant oncogene expression and provide a model for the highly treatment-resistant ETP-ALL subtype.
doi:10.1371/journal.pone.0085883
PMCID: PMC3897537  PMID: 24465765
4.  Coordinated transcriptional regulation of bone homeostasis by Ebf1 and Zfp521 in both mesenchymal and hematopoietic lineages 
Absence of the transcriptional regulator Zfp521 results in decreased bone formation by osteoblasts and increased osteoclast differentiation, largely via Zfp521’s regulation of the transcription factor Ebf1.
Bone homeostasis is maintained by the coupled actions of hematopoietic bone-resorbing osteoclasts (OCs) and mesenchymal bone-forming osteoblasts (OBs). Here we identify early B cell factor 1 (Ebf1) and the transcriptional coregulator Zfp521 as components of the machinery that regulates bone homeostasis through coordinated effects in both lineages. Deletion of Zfp521 in OBs led to impaired bone formation and increased OB-dependent osteoclastogenesis (OC-genesis), and deletion in hematopoietic cells revealed a strong cell-autonomous role for Zfp521 in OC progenitors. In adult mice, the effects of Zfp521 were largely caused by repression of Ebf1, and the bone phenotype of Zfp521+/− mice was rescued in Zfp521+/−:Ebf1+/− mice. Zfp521 interacted with Ebf1 and repressed its transcriptional activity. Accordingly, deletion of Zfp521 led to increased Ebf1 activity in OBs and OCs. In vivo, Ebf1 overexpression in OBs resulted in suppressed bone formation, similar to the phenotype seen after OB-targeted deletion of Zfp521. Conversely, Ebf1 deletion led to cell-autonomous defects in both OB-dependent and cell-intrinsic OC-genesis, a phenotype opposite to that of the Zfp521 knockout. Thus, we have identified the interplay between Zfp521 and Ebf1 as a novel rheostat for bone homeostasis.
doi:10.1084/jem.20121187
PMCID: PMC3646489  PMID: 23569325
5.  A modified Sleeping Beauty transposon system that can be used to model a wide variety of human cancers in mice 
Cancer research  2009;69(20):8150-8156.
Recent advances in cancer therapeutics stress the need for a better understanding of the molecular mechanisms driving tumor formation. This can be accomplished by obtaining a more complete description of the genes that contribute to cancer. We previously described an approach using the Sleeping Beauty transposon system to model hematopoietic malignancies in mice. Here we describe modifications of the SB system that provide additional flexibility in generating mouse models of cancer. First, we describe a Cre-inducible SBase allele, RosaSBaseLsL, that allows restriction of transposon mutagenesis to a specific tissue of interest. This allele was used to generate a model of germinal center B-cell lymphoma by activating SBase expression with a Aid-Cre allele. In a second approach, a novel transposon was generated, T2/Onc3, in which the CMV enhancer/β-actin (CAG) promoter drives oncogene expression. When combined with ubiquitous SBase expression, the T2/Onc3 transposon produced nearly 200 independent tumors of over 20 different types in a cohort of 62 mice. Analysis of transposon insertion sites identified novel candidate genes, including Zmiz1 and Rian, involved in squamous cell carcinoma and hepatocellular carcinoma, respectively. These novel alleles provide additional tools for the SB system and provide some insight into how this mutagenesis system can be manipulated to model cancer in mice.
doi:10.1158/0008-5472.CAN-09-1135
PMCID: PMC3700628  PMID: 19808965
6.  Bcl11a is essential for lymphoid development and negatively regulates p53 
The Journal of Experimental Medicine  2012;209(13):2467-2483.
Bcl11a regulates development of lymphoid cells in adult mice in part by inhibiting expression of p53.
Transcription factors play important roles in lymphopoiesis. We have previously demonstrated that Bcl11a is essential for normal lymphocyte development in the mouse embryo. We report here that, in the adult mouse, Bcl11a is expressed in most hematopoietic cells and is highly enriched in B cells, early T cell progenitors, common lymphoid progenitors (CLPs), and hematopoietic stem cells (HSCs). In the adult mouse, Bcl11a deletion causes apoptosis in early B cells and CLPs and completely abolishes the lymphoid development potential of HSCs to B, T, and NK cells. Myeloid development, in contrast, is not obviously affected by the loss of Bcl11a. Bcl11a regulates expression of Bcl2, Bcl2-xL, and Mdm2, which inhibits p53 activities. Overexpression of Bcl2 and Mdm2, or p53 deficiency, rescues both lethality and proliferative defects in Bcl11a-deficient early B cells and enables the mutant CLPs to differentiate to lymphocytes. Bcl11a is therefore essential for lymphopoiesis and negatively regulates p53 activities. Deletion of Bcl11a may represent a new approach for generating a mouse model that completely lacks an adaptive immune system.
doi:10.1084/jem.20121846
PMCID: PMC3526365  PMID: 23230003
7.  Reprogramming of T Cells to Natural Killer–Like Cells upon Bcl11b Deletion 
Science (New York, N.Y.)  2010;329(5987):85-89.
T cells develop in the thymus and are critical for adaptive immunity. Natural killer (NK) lymphocytes constitute an essential component of the innate immune system in tumor surveillance, reproduction and defense against microbes and viruses. Here we show that the transcription factor Bcl11b was expressed in all T cell compartments and was indispensable for T lineage development. When Bcl11b was deleted, T cells from all developmental stages acquired NK cell properties and concomitantly lost or decreased T cell–associated gene expression. These induced T-to–natural killer (ITNK) cells, which were morphologically and genetically similar to conventional NK cells, killed tumor cells in vitro and effectively prevented tumor metastasis in vivo. Therefore, ITNKs may represent a new cell source for cell-based therapies.
doi:10.1126/science.1188063
PMCID: PMC3628452  PMID: 20538915
8.  Identification of Rtl1, a Retrotransposon-Derived Imprinted Gene, as a Novel Driver of Hepatocarcinogenesis 
PLoS Genetics  2013;9(4):e1003441.
We previously utilized a Sleeping Beauty (SB) transposon mutagenesis screen to discover novel drivers of HCC. This approach identified recurrent mutations within the Dlk1-Dio3 imprinted domain, indicating that alteration of one or more elements within the domain provides a selective advantage to cells during the process of hepatocarcinogenesis. For the current study, we performed transcriptome and small RNA sequencing to profile gene expression in SB–induced HCCs in an attempt to clarify the genetic element(s) contributing to tumorigenesis. We identified strong induction of Retrotransposon-like 1 (Rtl1) expression as the only consistent alteration detected in all SB–induced tumors with Dlk1-Dio3 integrations, suggesting that Rtl1 activation serves as a driver of HCC. While previous studies have identified correlations between disrupted expression of multiple Dlk1-Dio3 domain members and HCC, we show here that direct modulation of a single domain member, Rtl1, can promote hepatocarcinogenesis in vivo. Overexpression of Rtl1 in the livers of adult mice using a hydrodynamic gene delivery technique resulted in highly penetrant (86%) tumor formation. Additionally, we detected overexpression of RTL1 in 30% of analyzed human HCC samples, indicating the potential relevance of this locus as a therapeutic target for patients. The Rtl1 locus is evolutionarily derived from the domestication of a retrotransposon. In addition to identifying Rtl1 as a novel driver of HCC, our study represents one of the first direct in vivo demonstrations of a role for such a co-opted genetic element in promoting carcinogenesis.
Author Summary
HCC is the third deadliest cancer worldwide, largely due to a lack of effective treatment options. Therapeutic approaches targeted at the molecular mechanisms underlying tumor formation and progression have shown great efficacy for treating other tumor types. Unfortunately, however, much remains to be learned about the molecular pathogenesis of HCC. There is an urgent need to identify and characterize genetic alterations that drive HCC in order to facilitate the development of more effective targeted therapeutics for patients. Here, we present data showing that recurrent mutations identified in a mouse model of HCC result in overexpression of the Rtl1 gene. We have validated Rtl1 as a driver of HCC by demonstrating that its overexpression in mouse liver causes tumor formation. We also detected overexpression of this gene in a significant proportion of human HCC samples, suggesting that it may be a relevant therapeutic target for patients with this disease.
doi:10.1371/journal.pgen.1003441
PMCID: PMC3616914  PMID: 23593033
9.  Whole-body Sleeping Beauty mutagenesis can cause penetrant leukemia/lymphoma and rare high-grade glioma without associated embryonic lethality 
Cancer research  2009;69(21):8429-8437.
The Sleeping Beauty (SB) transposon system has been used as a somatic mutagen to identify candidate cancer genes. In previous studies, efficient leukemia/lymphoma formation on an otherwise wild-type genetic background occurred in mice undergoing whole-body mobilization of transposons, but was accompanied by high levels of embryonic lethality. To explore the utility of SB for large-scale cancer gene discovery projects, we have generated mice that carry combinations of different transposon and transposase transgenes. We have identified a transposon/transposase combination that promotes highly penetrant leukemia/lymphoma formation on an otherwise wild-type genetic background, yet does not cause embryonic lethality. Infiltrating gliomas also occurred at lower penetrance in these mice. SB-induced or accelerated tumors do not harbor large numbers of chromosomal amplifications or deletions, indicating that transposon mobilization likely promotes tumor formation by insertional mutagenesis of cancer genes, and not by promoting wide-scale genomic instability. Cloning of transposon insertions from lymphomas/leukemias identified common insertion sites at known and candidate novel cancer genes. These data indicate that a high mutagenesis rate can be achieved using SB without high levels of embryonic lethality or genomic instability. Furthermore, the SB system can be used to identify new genes involved in lymphomagenesis/leukemiogenesis.
doi:10.1158/0008-5472.CAN-09-1760
PMCID: PMC2771123  PMID: 19843846
Transposon; leukemia; glioma
10.  Toll-Like Receptor 3 Expressing Tumor Parenchyma and Infiltrating Natural Killer Cells in Hepatocellular Carcinoma Patients 
Background
Hepatocellular carcinoma (HCC) is a highly aggressive cancer that is linked to chronically dysregulated liver inflammation. However, appropriate immune responses can control HCC progression. Here we investigated the role and underlying mechanism of toll-like receptor 3 (TLR3) in HCC.
Methods
HCC cell death, and natural killer (NK) cell activation and cytotoxicity were assessed in vitro after treatment with the TLR3 ligand poly(I:C). The effect of TLR3 on the tumor parenchyma and infiltrating immune cells was investigated in a spontaneous liver tumor mouse model and a transplanted tumor mouse model (n = 3–9 mice per group). Immunohistochemistry and quantitative polymerase chain reaction were used to analyze tumor samples from 172 HCC patients. Paired t-tests and analysis of variance tests were used to calculate P-values. The relationship between TLR3 expression and survival was determined by the Kaplan–Meier univariate survival analysis and a log-rank test. All statistical tests were two-sided.
Results
TLR3 activation increased cell death in the TLR3+ SNU182 HCC cell line (30.5% vs 8.5%, P = .03) and promoted NK-cell activation (32.6% vs 19.4%, P < .001) and cytotoxicity (relative fourfold increase, P = .03) in vitro. In vivo, poly(I:C) treatment increased intratumoral chemokine expression, NK-cell activation and tumor infiltration, and proliferation of tumor-infiltrating T and NK cells. Proliferation of tumor parenchyma cells was decreased. Also, expression of chemokines or treatment with poly(I:C) decreased tumor growth. TLR3 expression in patient samples correlated with NK-cell activation, NK- and T-cell tumor infiltration, and inversely correlated with tumor parenchyma cell viability. TLR3 expression was also associated with longer survival in HCC patients (hazard ratio of survival = 2.1, 95% confidence interval = 1.3 to 3.4, P = .002).
Conclusions
TLR3 is an important modulator of HCC progression and is a potential target for novel immunotherapy.
doi:10.1093/jnci/djs436
PMCID: PMC3814220  PMID: 23197495
11.  Aberrant Epithelial-Mesenchymal Hedgehog Signaling Characterizes Barrett's Metaplasia 
Gastroenterology  2010;138(5):1810-1822.
Background & Aims
The molecular mechanism underlying epithelial metaplasia in Barrett's esophagus remains unknown. Recognizing that Hedgehog signaling is required for early esophageal development, we sought to determine if the Hedgehog pathway is reactivated in Barrett's esophagus, and if genes downstream of the pathway could promote columnar differentiation of esophageal epithelium.
Methods
Immunohistochemistry, immunofluorescence, and quantitative real-time PCR were used to analyze clinical specimens, human esophageal cell lines, and mouse esophagi. Human esophageal squamous epithelial (HET-1A) and adenocarcinoma (OE33) cells were subjected to acid treatment and used in transfection experiments. Swiss Webster mice were used in a surgical model of bile reflux injury. An in vivo transplant culture system was created using esophageal epithelium from Sonic hedgehog transgenic mice.
Results
Marked upregulation of Hedgehog ligand expression, which can be induced by acid or bile exposure, occurs frequently in Barrett's epithelium and is associated with stromal expression of the Hedgehog target genes PTCH1 and BMP4. BMP4 signaling induces expression of SOX9, an intestinal crypt transcription factor, which is highly expressed in Barrett's epithelium. We further show that expression of DMBT1, the human homologue of the columnar cell factor Hensin, occurs in Barrett's epithelium and is induced by SOX9. Finally, transgenic expression of Sonic hedgehog in mouse esophageal epithelium induces expression of stromal Bmp4, epithelial Sox9 and columnar cytokeratins.
Conclusions
Epithelial Hedgehog ligand expression may contribute to the initiation of Barrett's esophagus through induction of stromal BMP4, which triggers reprogramming of esophageal epithelium in favor of a columnar phenotype.
doi:10.1053/j.gastro.2010.01.048
PMCID: PMC3422577  PMID: 20138038
Hedgehog signaling; Barrett's esophagus; BMP4; SOX9
12.  A dual function of Bcl11b/Ctip2 in hippocampal neurogenesis 
The EMBO Journal  2012;31(13):2922-2936.
The transcription factor Bcl11b/Ctip2 promotes hippocampal progenitor proliferation and neural differentiation in a non-cell autonomous manner by regulating the expression of the cell adhesion molecule Desmoplakin. Forebrain-specific ablation causes defective spatial learning and memory.
The development of the dentate gyrus is characterized by distinct phases establishing a durable stem-cell pool required for postnatal and adult neurogenesis. Here, we report that Bcl11b/Ctip2, a zinc finger transcription factor expressed in postmitotic neurons, plays a critical role during postnatal development of the dentate gyrus. Forebrain-specific ablation of Bcl11b uncovers dual phase-specific functions of Bcl11b demonstrated by feedback control of the progenitor cell compartment as well as regulation of granule cell differentiation, leading to impaired spatial learning and memory in mutants. Surprisingly, we identified Desmoplakin as a direct transcriptional target of Bcl11b. Similarly to Bcl11b, postnatal neurogenesis and granule cell differentiation are impaired in Desmoplakin mutants. Re-expression of Desmoplakin in Bcl11b mutants rescues impaired neurogenesis, suggesting Desmoplakin to be an essential downstream effector of Bcl11b in hippocampal development. Together, our data define an important novel regulatory pathway in hippocampal development, by linking transcriptional functions of Bcl11b to Desmoplakin, a molecule known to act on cell adhesion.
doi:10.1038/emboj.2012.142
PMCID: PMC3395096  PMID: 22588081
Bcl11b/Ctip2; dentate gyrus; neurogenesis; transcription factor
13.  Critical role of Bcl11b in suppressor function of T regulatory cells and prevention of inflammatory bowel disease 
The Journal of Experimental Medicine  2011;208(10):2069-2081.
Bcl11b is required for optimal FoxP3 expression and suppressor function by regulatory T cells and for the generation of inducible regulatory T cells.
Dysregulated CD4+ T cell responses and alterations in T regulatory cells (Treg cells) play a critical role in autoimmune diseases, including inflammatory bowel disease (IBD). The current study demonstrates that removal of Bcl11b at the double-positive stage of T cell development or only in Treg cells causes IBD because of proinflammatory cytokine-producing CD4+ T cells infiltrating the colon. Provision of WT Treg cells prevented IBD, demonstrating that alterations in Treg cells are responsible for the disease. Furthermore, Bcl11b-deficient Treg cells had reduced suppressor activity with altered gene expression profiles, including reduced expression of the genes encoding Foxp3 and IL-10, and up-regulation of genes encoding proinflammatory cytokines. Additionally, the absence of Bcl11b altered the induction of Foxp3 expression and reduced the generation of induced Treg cells (iTreg cells) after Tgf-β treatment of conventional CD4+ T cells. Bcl11b bound to Foxp3 and IL-10 promoters, as well as to critical conserved noncoding sequences within the Foxp3 and IL-10 loci, and mutating the Bcl11b binding site in the Foxp3 promoter reduced expression of a luciferase reporter gene. These experiments demonstrate that Bcl11b is indispensable for Treg suppressor function and for maintenance of optimal Foxp3 and IL-10 gene expression, as well as for the induction of Foxp3 expression in conventional CD4+ T cells in response to Tgf-β and generation of iTreg cells.
doi:10.1084/jem.20102683
PMCID: PMC3182057  PMID: 21875956
14.  Targeted Inactivation of Kinesin-1 in Pancreatic β-Cells In Vivo Leads to Insulin Secretory Deficiency 
Diabetes  2010;60(1):320-330.
OBJECTIVE
Suppression of Kinesin-1 by antisense oligonucleotides, or overexpression of dominant-negative acting kinesin heavy chain, has been reported to affect the sustained phase of glucose-stimulated insulin secretion in β-cells in vitro. In this study, we examined the in vivo physiological role of Kinesin-1 in β-cell development and function.
RESEARCH DESIGN AND METHODS
A Cre-LoxP strategy was used to generate conditional knockout mice in which the Kif5b gene is specifically inactivated in pancreatic β-cells. Physiological and histological analyses were carried out in Kif5b knockout mice as well as littermate controls.
RESULTS
Mice with β-cell specific deletion of Kif5b (Kif5bfl/−:RIP2-Cre) displayed significantly retarded growth as well as slight hyperglycemia in both nonfasting and 16-h fasting conditions compared with control littermates. In addition, Kif5bfl/−:RIP2-Cre mice displayed significant glucose intolerance, which was not due to insulin resistance but was related to an insulin secretory defect in response to glucose challenge. These defects of β-cell function in mutant mice were not coupled with observable changes in islet morphology, islet cell composition, or β-cell size. However, compared with controls, pancreas of Kif5bfl/−:RIP2-Cre mice exhibited both reduced islet size and increased islet number, concomitant with an increased insulin vesicle density in β-cells.
CONCLUSIONS
In addition to being essential for maintaining glucose homeostasis and regulating β-cell function, Kif5b may be involved in β-cell development by regulating β-cell proliferation and insulin vesicle synthesis.
doi:10.2337/db09-1078
PMCID: PMC3012189  PMID: 20870970
15.  Zfp521 Is a Target Gene and Key Effector of Parathyroid Hormone-Related Peptide Signaling in Growth Plate Chondrocytes 
Developmental cell  2010;19(4):533-546.
Summary
In the growth plate, the interplay between Parathyroid Hormone-Related Peptide (PTHrP) and Indian Hedgehog (Ihh) signaling tightly regulates chondrocyte proliferation and differentiation during longitudinal bone growth. We found that PTHrP increases the expression of Zfp521, a zinc finger transcriptional co-regulator, in pre-hypertrophic chondrocytes. Mice with chondrocyte-targeted deletion of Zfp521 resembled PTHrP-/- and chondrocyte-specific PTHR1-/- mice, with decreased chondrocyte proliferation, early hypertrophic transition and reduced growth plate thickness. Deleting Zfp521 increased expression of Runx2 and Runx2 target genes, and decreased cyclin D1 and Bcl-2 expression while increasing caspase-3 activation and apoptosis. Zfp521 associated with Runx2 in chondrocytes, antagonizing its activity via an HDAC4-dependent mechanism. PTHrP failed to up-regulate cyclin D1 and to antagonize Runx2, Ihh and Collagen X expression when Zfp521 was absent. Thus, Zfp521 is an important PTHrP target gene that regulates growth plate chondrocyte proliferation and differentiation.
doi:10.1016/j.devcel.2010.09.008
PMCID: PMC2958174  PMID: 20951345
16.  Synphilin-1 attenuates neuronal degeneration in the A53T α-synuclein transgenic mouse model 
Human Molecular Genetics  2010;19(11):2087-2098.
Genetic alterations in α-synuclein cause autosomal dominant familial Parkinsonism and may contribute to sporadic Parkinson's disease (PD). Synphilin-1 is an α-synuclein-interacting protein, with implications in PD pathogenesis related to protein aggregation. Currently, the in vivo role of synphilin-1 in α-synuclein-linked pathogenesis is not fully understood. Using the mouse prion protein promoter, we generated synphilin-1 transgenic mice, which did not display PD-like phenotypes. However, synphilin-1/A53T α-synuclein double-transgenic mice survived longer than A53T α-synuclein single-transgenic mice. There were attenuated A53T α-synuclein-induced motor abnormalities and decreased astroglial reaction and neuronal degeneration in brains in double-transgenic mice. Overexpression of synphilin-1 decreased caspase-3 activation, increased beclin-1 and LC3 II expression and promoted formation of aggresome-like structures, suggesting that synphilin-1 alters multiple cellular pathways to protect against neuronal degeneration. These studies demonstrate that synphilin-1 can diminish the severity of α-synucleinopathy and play a neuroprotective role against A53T α-synuclein toxicity in vivo.
doi:10.1093/hmg/ddq086
PMCID: PMC2865369  PMID: 20185556
17.  Dopaminergic Neuronal Loss, Reduced Neurite Complexity and Autophagic Abnormalities in Transgenic Mice Expressing G2019S Mutant LRRK2 
PLoS ONE  2011;6(4):e18568.
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene cause late-onset, autosomal dominant familial Parkinson's disease (PD) and also contribute to idiopathic PD. LRRK2 mutations represent the most common cause of PD with clinical and neurochemical features that are largely indistinguishable from idiopathic disease. Currently, transgenic mice expressing wild-type or disease-causing mutants of LRRK2 have failed to produce overt neurodegeneration, although abnormalities in nigrostriatal dopaminergic neurotransmission have been observed. Here, we describe the development and characterization of transgenic mice expressing human LRRK2 bearing the familial PD mutations, R1441C and G2019S. Our study demonstrates that expression of G2019S mutant LRRK2 induces the degeneration of nigrostriatal pathway dopaminergic neurons in an age-dependent manner. In addition, we observe autophagic and mitochondrial abnormalities in the brains of aged G2019S LRRK2 mice and markedly reduced neurite complexity of cultured dopaminergic neurons. These new LRRK2 transgenic mice will provide important tools for understanding the mechanism(s) through which familial mutations precipitate neuronal degeneration and PD.
doi:10.1371/journal.pone.0018568
PMCID: PMC3071839  PMID: 21494637
18.  Antigen-specific clonal expansion and cytolytic effector function of CD8+ T lymphocytes depend on the transcription factor Bcl11b 
The Journal of Experimental Medicine  2010;207(8):1687-1699.
CD8+ T lymphocytes mediate the immune response to viruses, intracellular bacteria, protozoan parasites, and tumors. We provide evidence that the transcription factor Bcl11b/Ctip2 controls hallmark features of CD8+ T cell immunity, specifically antigen (Ag)-dependent clonal expansion and cytolytic activity. The reduced clonal expansion in the absence of Bcl11b was caused by altered proliferation during the expansion phase, with survival remaining unaffected. Two genes with critical roles in TCR signaling were deregulated in Bcl11b-deficient CD8+ T cells, CD8 coreceptor and Plcγ1, both of which may contribute to the impaired responsiveness. Bcl11b was found to bind the E8I, E8IV, and E8V, but not E8II or E8III, enhancers. Thus, Bcl11b is one of the transcription factors implicated in the maintenance of optimal CD8 coreceptor expression in peripheral CD8+ T cells through association with specific enhancers. Short-lived Klrg1hiCD127lo effector CD8+ T cells were formed during the course of infection in the absence of Bcl11b, albeit in smaller numbers, and their Ag-specific cytolytic activity on a per-cell basis was altered, which was associated with reduced granzyme B and perforin.
doi:10.1084/jem.20092136
PMCID: PMC2916134  PMID: 20660613
19.  An Integrated Genetic-Genomic Approach for the Identification of Novel Cancer Loci in Mice Sensitized to c-Myc–Induced Apoptosis 
Genes & cancer  2010;1(5):465-479.
Deregulated c-Myc is associated with a wide range of human cancers. In many cell types, overexpression of c-Myc potently promotes cell growth and proliferation concomitant with the induction of apoptosis. Secondary genetic events that shift this balance either by increasing growth and proliferation or limiting apoptosis are likely to cooperate with c-Myc in tumorigenesis. Here, the authors have performed large-scale insertional mutagenesis in Eμ-c-myc mice that, through mdm2 loss of function mutations, are sensitized to apoptosis. The authors chose to use this genetic background based on the hypothesis that the high level of apoptosis induced by c-Myc overexpression in MDM2-deficient mice would act as a rate-limiting barrier for lymphoma development. As a result, it was predicted that the spectrum of retroviral insertions would be shifted toward loci that harbor antiapoptotic genes. Nine novel common insertion sites (CISs) specific to mice with this sensitized genetic background were identified, suggesting the presence of novel antiapoptotic cancer genes. Moreover, cross-comparing the data to the Retroviral Tagged Cancer Gene Database, the authors identified an additional 23 novel CISs. Here, evidence is presented that 2 genes, ppp1r16b and hdac6, identified at CISs, are bona fide cellular oncogenes. This study highlights the power of combining unique sensitized genetic backgrounds with large-scale mutagenesis as an approach for identifying novel cancer genes.
doi:10.1177/1947601910374875
PMCID: PMC2949282  PMID: 20927200
Myc; MDM2; p53; apoptosis; lymphoma
20.  Whole-body Sleeping Beauty mutagenesis can cause penetrant leukemia/lymphoma and rare high-grade glioma without associated embryonic lethality 
Cancer research  2009;69(21):8429-8437.
The Sleeping Beauty (SB) transposon system has been used as a somatic mutagen to identify candidate cancer genes. In previous studies, efficient leukemia/lymphoma formation on an otherwise wild-type genetic background occurred in mice undergoing whole-body mobilization of transposons, but was accompanied by high levels of embryonic lethality. To explore the utility of SB for large-scale cancer gene discovery projects, we have generated mice that carry combinations of different transposon and transposase transgenes. We have identified a transposon/transposase combination that promotes highly penetrant leukemia/lymphoma formation on an otherwise wild-type genetic background, yet does not cause embryonic lethality. Infiltrating gliomas also occurred at lower penetrance in these mice. SB-induced or accelerated tumors do not harbor large numbers of chromosomal amplifications or deletions, indicating that transposon mobilization likely promotes tumor formation by insertional mutagenesis of cancer genes, and not by promoting wide-scale genomic instability. Cloning of transposon insertions from lymphomas/leukemias identified common insertion sites at known and candidate novel cancer genes. These data indicate that a high mutagenesis rate can be achieved using SB without high levels of embryonic lethality or genomic instability. Furthermore, the SB system can be used to identify new genes involved in lymphomagenesis/leukemiogenesis.
doi:10.1158/0008-5472.CAN-09-1760
PMCID: PMC2771123  PMID: 19843846
Transposon; leukemia; glioma
21.  An Integrated Genetic-Genomic Approach for the Identification of Novel Cancer Loci in Mice Sensitized to c-Myc–Induced Apoptosis 
Genes & Cancer  2010;1(5):465-479.
Deregulated c-Myc is associated with a wide range of human cancers. In many cell types, overexpression of c-Myc potently promotes cell growth and proliferation concomitant with the induction of apoptosis. Secondary genetic events that shift this balance either by increasing growth and proliferation or limiting apoptosis are likely to cooperate with c-Myc in tumorigenesis. Here, the authors have performed large-scale insertional mutagenesis in Eµ-c-myc mice that, through mdm2 loss of function mutations, are sensitized to apoptosis. The authors chose to use this genetic background based on the hypothesis that the high level of apoptosis induced by c-Myc overexpression in MDM2-deficient mice would act as a rate-limiting barrier for lymphoma development. As a result, it was predicted that the spectrum of retroviral insertions would be shifted toward loci that harbor antiapoptotic genes. Nine novel common insertion sites (CISs) specific to mice with this sensitized genetic background were identified, suggesting the presence of novel antiapoptotic cancer genes. Moreover, cross-comparing the data to the Retroviral Tagged Cancer Gene Database, the authors identified an additional 23 novel CISs. Here, evidence is presented that 2 genes, ppp1r16b and hdac6, identified at CISs, are bona fide cellular oncogenes. This study highlights the power of combining unique sensitized genetic backgrounds with large-scale mutagenesis as an approach for identifying novel cancer genes.
doi:10.1177/1947601910374875
PMCID: PMC2949282  PMID: 20927200
Myc; MDM2; p53; apoptosis; lymphoma
22.  Hermansky-Pudlak syndrome type 7 (HPS-7) results from mutant dysbindin, a member of the biogenesis of lysosome-related organelles complex 1 (BLOC-1) 
Nature genetics  2003;35(1):84-89.
Hermansky-Pudlak syndrome (HPS; MIM 203300) is a genetically heterogeneous disorder characterized by oculocutaneous albinism, prolonged bleeding and pulmonary fibrosis due to abnormal vesicle trafficking to lysosomes and related organelles, such as melanosomes and platelet dense granules1–3. In mice, at least 16 loci are associated with HPS4–6, including sandy (sdy; ref. 7). Here we show that the sdy mutant mouse expresses no dysbindin protein owing to a deletion in the gene Dtnbp1 (encoding dysbindin) and that mutation of the human ortholog DTNBP1 causes a novel form of HPS called HPS-7. Dysbindin is a ubiquitously expressed protein that binds to α- and β-dystrobrevins, components of the dystrophin-associated protein complex (DPC) in both muscle and nonmuscle cells8. We also show that dysbindin is a component of the biogenesis of lysosome-related organelles complex 1 (BLOC-1; refs. 9–11), which regulates trafficking to lysosome-related organelles and includes the proteins pallidin, muted and cappuccino, which are associated with HPS in mice. These findings show that BLOC-1 is important in producing the HPS phenotype in humans, indicate that dysbindin has a role in the biogenesis of lysosome-related organelles and identify unexpected interactions between components of DPC and BLOC-1.
doi:10.1038/ng1229
PMCID: PMC2860733  PMID: 12923531
23.  Neurofibromin-deficient fibroblasts fail to form perineurium in vitro 
Development (Cambridge, England)  1995;121(11):3583-3592.
SUMMARY
To identify cell type(s) that might contribute to nerve sheath tumors (neurofibromas) in patients with neurofibromatosis type 1, we generated cell cultures containing neurons, Schwann cells and fibroblasts from transgenic mouse embryos in which the type 1 neurofibromatosis gene was disrupted by homologous recombination (Brannan et al. (1994) Genes Development, 8,1019–1029). Normal fascicle formation by perineurial cells failed to occur in the absence of neurofibromin. Fascicles were reduced in number and showed abnormal morphology when normal neurons and Schwann cells were cultured up to 37 days with fibroblasts lacking neurofibromin. Proliferation was increased in a majority of fibroblast cell strains analyzed from embryos lacking neurofibromin. These observations suggest that mutations in the neurofibromatosis type 1 gene affect fibroblast behavior that might contribute to neurofibroma formation in patients with neurofibromatosis type 1.
PMCID: PMC2854496  PMID: 8582272
neurofibromatosis; NF1; fibroblast; neurofibroma; perineurium; ras; transgenic mice; Schwann cell
24.  Visualization and Identification of IL-7 Producing Cells in Reporter Mice 
PLoS ONE  2009;4(11):e7637.
Interleukin-7 (IL-7) is required for lymphocyte development and homeostasis although the actual sites of IL-7 production have never been clearly identified. We produced a bacterial artificial chromosome (BAC) transgenic mouse expressing ECFP in the Il7 locus. The construct lacked a signal peptide and ECFP (enhanced cyan fluorescent protein ) accumulated inside IL-7-producing stromal cells in thoracic thymus, cervical thymus and bone marrow. In thymus, an extensive reticular network of IL-7-containing processes extended from cortical and medullary epithelial cells, closely contacting thymocytes. Central memory CD8 T cells, which require IL-7 and home to bone marrow, physically associated with IL-7-producing cells as we demonstrate by intravital imaging.
doi:10.1371/journal.pone.0007637
PMCID: PMC2770321  PMID: 19907640
25.  Pbx/Meis Deficiencies Demonstrate Multigenetic Origins of Congenital Heart Disease 
Circulation research  2008;103(7):702-709.
Congenital heart diseases are traditionally considered to be multifactorial in pathogenesis resulting from environmental and genetic interactions that determine penetrance and expressivity within a genetically predisposed family. Recent evidence suggests that genetic contributions have been significantly underestimated. However, single gene defects occur only in a minority of cases, and multigenetic causes of congenital heart diseases have not been fully demonstrated. Here, we show that interactions between alleles of 3 Pbx genes, which encode homeodomain transcription factors, are sufficient to determine the phenotypic presentation of congenital heart diseases in mice. A major role is served by Pbx1, whose inactivation results in persistent truncus arteriosus. Reduction or absence of Pbx2 or Pbx3 leads to Pbx1 haploinsufficiency and specific malformations that resemble tetralogy of Fallot, overriding aorta with ventricular septal defect, and bicuspid aortic valves. Disruption of Meis1, which encodes a Pbx DNA-binding partner, results in cardiac anomalies that resemble those caused by Pbx mutations. Each of the observed cardiac defects represents developmental abnormalities affecting distinct stages of cardiac outflow tract development and corresponds to specific types of human congenital heart disease. Thus, varied deficiencies in the Pbx gene family produce a full spectrum of cardiac defects involving the outflow tract, providing a framework for determining multigenetic causes of congenital heart anomalies.
doi:10.1161/CIRCRESAHA.108.175489
PMCID: PMC2633052  PMID: 18723445
Pbx; Meis; Hox; heart development; neural crest cell; cardiac outflow tract; persistent truncus arteriosus; tetralogy of Fallot; overriding aorta; bicuspid aortic valve

Results 1-25 (52)