Search tips
Search criteria

Results 1-16 (16)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  A model of yeast glycolysis based on a consistent kinetic characterisation of all its enzymes 
Febs Letters  2013;587(17):2832-2841.
We present an experimental and computational pipeline for the generation of kinetic models of metabolism, and demonstrate its application to glycolysis in Saccharomyces cerevisiae. Starting from an approximate mathematical model, we employ a “cycle of knowledge” strategy, identifying the steps with most control over flux. Kinetic parameters of the individual isoenzymes within these steps are measured experimentally under a standardised set of conditions. Experimental strategies are applied to establish a set of in vivo concentrations for isoenzymes and metabolites. The data are integrated into a mathematical model that is used to predict a new set of metabolite concentrations and reevaluate the control properties of the system. This bottom-up modelling study reveals that control over the metabolic network most directly involved in yeast glycolysis is more widely distributed than previously thought.
PMCID: PMC3764422  PMID: 23831062
Glycolysis; Systems biology; Enzyme kinetic; Isoenzyme; Modelling
2.  The Gel Electrophoresis Markup Language (GelML) from the Proteomics Standards Initiative 
Proteomics  2010;10(17):3073-3081.
The Human Proteome Organisation’s Proteomics Standards Initiative (HUPO-PSI) has developed the GelML data exchange format for representing gel electrophoresis experiments performed in proteomics investigations. The format closely follows the reporting guidelines for gel electrophoresis, which are part of the Minimum Information About a Proteomics Experiment (MIAPE) set of modules. GelML supports the capture of metadata (such as experimental protocols) and data (such as gel images) resulting from gel electrophoresis so that laboratories can be compliant with the MIAPE Gel Electrophoresis guidelines, while allowing such data sets to be exchanged or downloaded from public repositories. The format is sufficiently flexible to capture data from a broad range of experimental processes, and complements other PSI formats for mass spectrometry data and the results of protein and peptide identifications to capture entire gel-based proteome workflows. GelML has resulted from the open standardisation process of PSI consisting of both public consultation and anonymous review of the specifications.
PMCID: PMC3193076  PMID: 20677327
data standard; gel electrophoresis; database; ontology
3.  A Semantic Sensor Web for Environmental Decision Support Applications 
Sensors (Basel, Switzerland)  2011;11(9):8855-8887.
Sensing devices are increasingly being deployed to monitor the physical world around us. One class of application for which sensor data is pertinent is environmental decision support systems, e.g., flood emergency response. For these applications, the sensor readings need to be put in context by integrating them with other sources of data about the surrounding environment. Traditional systems for predicting and detecting floods rely on methods that need significant human resources. In this paper we describe a semantic sensor web architecture for integrating multiple heterogeneous datasets, including live and historic sensor data, databases, and map layers. The architecture provides mechanisms for discovering datasets, defining integrated views over them, continuously receiving data in real-time, and visualising on screen and interacting with the data. Our approach makes extensive use of web service standards for querying and accessing data, and semantic technologies to discover and integrate datasets. We demonstrate the use of our semantic sensor web architecture in the context of a flood response planning web application that uses data from sensor networks monitoring the sea-state around the coast of England.
PMCID: PMC3231498  PMID: 22164110
semantic sensor web; application and visualisation; semantic data integration
4.  Systematic integration of experimental data and models in systems biology 
BMC Bioinformatics  2010;11:582.
The behaviour of biological systems can be deduced from their mathematical models. However, multiple sources of data in diverse forms are required in the construction of a model in order to define its components and their biochemical reactions, and corresponding parameters. Automating the assembly and use of systems biology models is dependent upon data integration processes involving the interoperation of data and analytical resources.
Taverna workflows have been developed for the automated assembly of quantitative parameterised metabolic networks in the Systems Biology Markup Language (SBML). A SBML model is built in a systematic fashion by the workflows which starts with the construction of a qualitative network using data from a MIRIAM-compliant genome-scale model of yeast metabolism. This is followed by parameterisation of the SBML model with experimental data from two repositories, the SABIO-RK enzyme kinetics database and a database of quantitative experimental results. The models are then calibrated and simulated in workflows that call out to COPASIWS, the web service interface to the COPASI software application for analysing biochemical networks. These systems biology workflows were evaluated for their ability to construct a parameterised model of yeast glycolysis.
Distributed information about metabolic reactions that have been described to MIRIAM standards enables the automated assembly of quantitative systems biology models of metabolic networks based on user-defined criteria. Such data integration processes can be implemented as Taverna workflows to provide a rapid overview of the components and their relationships within a biochemical system.
PMCID: PMC3008707  PMID: 21114840
5.  Improving sensitivity in proteome studies by analysis of false discovery rates for multiple search engines 
Proteomics  2009;9(5):1220-1229.
Tandem mass spectrometry, run in combination with liquid chromatography (LC-MS/MS), can generate large numbers of peptide and protein identifications, for which a variety of database search engines are available. Distinguishing correct identifications from false positives is far from trivial because all data sets are noisy, and tend to be too large for manual inspection, therefore probabilistic methods must be employed to balance the trade-off between sensitivity and specificity. Decoy databases are becoming widely used to place statistical confidence in results sets, allowing the false discovery rate (FDR) to be estimated. It has previously been demonstrated that different MS search engines produce different peptide identification sets, and as such, employing more than one search engine could result in an increased number of peptides being identified. However, such efforts are hindered by the lack of a single scoring framework employed by all search engines.
We have developed a search engine independent scoring framework based on FDR which allows peptide identifications from different search engines to be combined, called the FDRScore. We observe that peptide identifications made by three search engines are infrequently false positives, and identifications made by only a single search engine, even with a strong score from the source search engine, are significantly more likely to be false positives. We have developed a second score based on the FDR within peptide identifications grouped according to the set of search engines that have made the identification, called the combined FDRScore. We demonstrate by searching large publicly available data sets that the combined FDRScore can differentiate between between correct and incorrect peptide identifications with high accuracy, allowing on average 35% more peptide identifications to be made at a fixed FDR than using a single search engine.
PMCID: PMC2899855  PMID: 19253293
proteomics; mass spectrometry; decoy database; search engine; scoring; false discovery rate
6.  Information management for high content live cell imaging 
BMC Bioinformatics  2009;10:226.
High content live cell imaging experiments are able to track the cellular localisation of labelled proteins in multiple live cells over a time course. Experiments using high content live cell imaging will generate multiple large datasets that are often stored in an ad-hoc manner. This hinders identification of previously gathered data that may be relevant to current analyses. Whilst solutions exist for managing image data, they are primarily concerned with storage and retrieval of the images themselves and not the data derived from the images. There is therefore a requirement for an information management solution that facilitates the indexing of experimental metadata and results of high content live cell imaging experiments.
We have designed and implemented a data model and information management solution for the data gathered through high content live cell imaging experiments. Many of the experiments to be stored measure the translocation of fluorescently labelled proteins from cytoplasm to nucleus in individual cells. The functionality of this database has been enhanced by the addition of an algorithm that automatically annotates results of these experiments with the timings of translocations and periods of any oscillatory translocations as they are uploaded to the repository. Testing has shown the algorithm to perform well with a variety of previously unseen data.
Our repository is a fully functional example of how high throughput imaging data may be effectively indexed and managed to address the requirements of end users. By implementing the automated analysis of experimental results, we have provided a clear impetus for individuals to ensure that their data forms part of that which is stored in the repository. Although focused on imaging, the solution provided is sufficiently generic to be applied to other functional proteomics and genomics experiments. The software is available from:
PMCID: PMC2723092  PMID: 19622144
7.  Comparative Genome Analysis of Filamentous Fungi Reveals Gene Family Expansions Associated with Fungal Pathogenesis 
PLoS ONE  2008;3(6):e2300.
Fungi and oomycetes are the causal agents of many of the most serious diseases of plants. Here we report a detailed comparative analysis of the genome sequences of thirty-six species of fungi and oomycetes, including seven plant pathogenic species, that aims to explore the common genetic features associated with plant disease-causing species. The predicted translational products of each genome have been clustered into groups of potential orthologues using Markov Chain Clustering and the data integrated into the e-Fungi object-oriented data warehouse ( Analysis of the species distribution of members of these clusters has identified proteins that are specific to filamentous fungal species and a group of proteins found only in plant pathogens. By comparing the gene inventories of filamentous, ascomycetous phytopathogenic and free-living species of fungi, we have identified a set of gene families that appear to have expanded during the evolution of phytopathogens and may therefore serve important roles in plant disease. We have also characterised the predicted set of secreted proteins encoded by each genome and identified a set of protein families which are significantly over-represented in the secretomes of plant pathogenic fungi, including putative effector proteins that might perturb host cell biology during plant infection. The results demonstrate the potential of comparative genome analysis for exploring the evolution of eukaryotic microbial pathogenesis.
PMCID: PMC2409186  PMID: 18523684
8.  Facilitating the development of controlled vocabularies for metabolomics technologies with text mining 
BMC Bioinformatics  2008;9(Suppl 5):S5.
Many bioinformatics applications rely on controlled vocabularies or ontologies to consistently interpret and seamlessly integrate information scattered across public resources. Experimental data sets from metabolomics studies need to be integrated with one another, but also with data produced by other types of omics studies in the spirit of systems biology, hence the pressing need for vocabularies and ontologies in metabolomics. However, it is time-consuming and non trivial to construct these resources manually.
We describe a methodology for rapid development of controlled vocabularies, a study originally motivated by the needs for vocabularies describing metabolomics technologies. We present case studies involving two controlled vocabularies (for nuclear magnetic resonance spectroscopy and gas chromatography) whose development is currently underway as part of the Metabolomics Standards Initiative. The initial vocabularies were compiled manually, providing a total of 243 and 152 terms. A total of 5,699 and 2,612 new terms were acquired automatically from the literature. The analysis of the results showed that full-text articles (especially the Materials and Methods sections) are the major source of technology-specific terms as opposed to paper abstracts.
We suggest a text mining method for efficient corpus-based term acquisition as a way of rapidly expanding a set of controlled vocabularies with the terms used in the scientific literature. We adopted an integrative approach, combining relatively generic software and data resources for time- and cost-effective development of a text mining tool for expansion of controlled vocabularies across various domains, as a practical alternative to both manual term collection and tailor-made named entity recognition methods.
PMCID: PMC2367623  PMID: 18460187
9.  ISPIDER Central: an integrated database web-server for proteomics 
Nucleic Acids Research  2008;36(Web Server issue):W485-W490.
Despite the growing volumes of proteomic data, integration of the underlying results remains problematic owing to differences in formats, data captured, protein accessions and services available from the individual repositories. To address this, we present the ISPIDER Central Proteomic Database search (, an integration service offering novel search capabilities over leading, mature, proteomic repositories including PRoteomics IDEntifications database (PRIDE), PepSeeker, PeptideAtlas and the Global Proteome Machine. It enables users to search for proteins and peptides that have been characterised in mass spectrometry-based proteomics experiments from different groups, stored in different databases, and view the collated results with specialist viewers/clients. In order to overcome limitations imposed by the great variability in protein accessions used by individual laboratories, the European Bioinformatics Institute's Protein Identifier Cross-Reference (PICR) service is used to resolve accessions from different sequence repositories. Custom-built clients allow users to view peptide/protein identifications in different contexts from multiple experiments and repositories, as well as integration with the Dasty2 client supporting any annotations available from Distributed Annotation System servers. Further information on the protein hits may also be added via external web services able to take a protein as input. This web server offers the first truly integrated access to proteomics repositories and provides a unique service to biologists interested in mass spectrometry-based proteomics.
PMCID: PMC2447780  PMID: 18440977
10.  Data capture in bioinformatics: requirements and experiences with Pedro 
BMC Bioinformatics  2008;9:183.
The systematic capture of appropriately annotated experimental data is a prerequisite for most bioinformatics analyses. Data capture is required not only for submission of data to public repositories, but also to underpin integrated analysis, archiving, and sharing – both within laboratories and in collaborative projects. The widespread requirement to capture data means that data capture and annotation are taking place at many sites, but the small scale of the literature on tools, techniques and experiences suggests that there is work to be done to identify good practice and reduce duplication of effort.
This paper reports on experience gained in the deployment of the Pedro data capture tool in a range of representative bioinformatics applications. The paper makes explicit the requirements that have recurred when capturing data in different contexts, indicates how these requirements are addressed in Pedro, and describes case studies that illustrate where the requirements have arisen in practice.
Data capture is a fundamental activity for bioinformatics; all biological data resources build on some form of data capture activity, and many require a blend of import, analysis and annotation. Recurring requirements in data capture suggest that model-driven architectures can be used to construct data capture infrastructures that can be rapidly configured to meet the needs of individual use cases. We have described how one such model-driven infrastructure, namely Pedro, has been deployed in representative case studies, and discussed the extent to which the model-driven approach has been effective in practice.
PMCID: PMC2335277  PMID: 18402673
11.  e-Fungi: a data resource for comparative analysis of fungal genomes 
BMC Genomics  2007;8:426.
The number of sequenced fungal genomes is ever increasing, with about 200 genomes already fully sequenced or in progress. Only a small percentage of those genomes have been comprehensively studied, for example using techniques from functional genomics. Comparative analysis has proven to be a useful strategy for enhancing our understanding of evolutionary biology and of the less well understood genomes. However, the data required for these analyses tends to be distributed in various heterogeneous data sources, making systematic comparative studies a cumbersome task. Furthermore, comparative analyses benefit from close integration of derived data sets that cluster genes or organisms in a way that eases the expression of requests that clarify points of similarity or difference between species.
To support systematic comparative analyses of fungal genomes we have developed the e-Fungi database, which integrates a variety of data for more than 30 fungal genomes. Publicly available genome data, functional annotations, and pathway information has been integrated into a single data repository and complemented with results of comparative analyses, such as MCL and OrthoMCL cluster analysis, and predictions of signaling proteins and the sub-cellular localisation of proteins. To access the data, a library of analysis tasks is available through a web interface. The analysis tasks are motivated by recent comparative genomics studies, and aim to support the study of evolutionary biology as well as community efforts for improving the annotation of genomes. Web services for each query are also available, enabling the tasks to be incorporated into workflows.
The e-Fungi database provides fungal biologists with a resource for comparative studies of a large range of fungal genomes. Its analysis library supports the comparative study of genome data, functional annotation, and results of large scale analyses over all the genomes stored in the database. The database is accessible at , as is the WSDL for the web services.
PMCID: PMC2242804  PMID: 18028535
12.  Growth control of the eukaryote cell: a systems biology study in yeast 
Journal of Biology  2007;6(2):4.
Cell growth underlies many key cellular and developmental processes, yet a limited number of studies have been carried out on cell-growth regulation. Comprehensive studies at the transcriptional, proteomic and metabolic levels under defined controlled conditions are currently lacking.
Metabolic control analysis is being exploited in a systems biology study of the eukaryotic cell. Using chemostat culture, we have measured the impact of changes in flux (growth rate) on the transcriptome, proteome, endometabolome and exometabolome of the yeast Saccharomyces cerevisiae. Each functional genomic level shows clear growth-rate-associated trends and discriminates between carbon-sufficient and carbon-limited conditions. Genes consistently and significantly upregulated with increasing growth rate are frequently essential and encode evolutionarily conserved proteins of known function that participate in many protein-protein interactions. In contrast, more unknown, and fewer essential, genes are downregulated with increasing growth rate; their protein products rarely interact with one another. A large proportion of yeast genes under positive growth-rate control share orthologs with other eukaryotes, including humans. Significantly, transcription of genes encoding components of the TOR complex (a major controller of eukaryotic cell growth) is not subject to growth-rate regulation. Moreover, integrative studies reveal the extent and importance of post-transcriptional control, patterns of control of metabolic fluxes at the level of enzyme synthesis, and the relevance of specific enzymatic reactions in the control of metabolic fluxes during cell growth.
This work constitutes a first comprehensive systems biology study on growth-rate control in the eukaryotic cell. The results have direct implications for advanced studies on cell growth, in vivo regulation of metabolic fluxes for comprehensive metabolic engineering, and for the design of genome-scale systems biology models of the eukaryotic cell.
PMCID: PMC2373899  PMID: 17439666
13.  Model-driven user interfaces for bioinformatics data resources: regenerating the wheel as an alternative to reinventing it 
BMC Bioinformatics  2006;7:532.
The proliferation of data repositories in bioinformatics has resulted in the development of numerous interfaces that allow scientists to browse, search and analyse the data that they contain. Interfaces typically support repository access by means of web pages, but other means are also used, such as desktop applications and command line tools. Interfaces often duplicate functionality amongst each other, and this implies that associated development activities are repeated in different laboratories. Interfaces developed by public laboratories are often created with limited developer resources. In such environments, reducing the time spent on creating user interfaces allows for a better deployment of resources for specialised tasks, such as data integration or analysis. Laboratories maintaining data resources are challenged to reconcile requirements for software that is reliable, functional and flexible with limitations on software development resources.
This paper proposes a model-driven approach for the partial generation of user interfaces for searching and browsing bioinformatics data repositories. Inspired by the Model Driven Architecture (MDA) of the Object Management Group (OMG), we have developed a system that generates interfaces designed for use with bioinformatics resources. This approach helps laboratory domain experts decrease the amount of time they have to spend dealing with the repetitive aspects of user interface development. As a result, the amount of time they can spend on gathering requirements and helping develop specialised features increases. The resulting system is known as Pierre, and has been validated through its application to use cases in the life sciences, including the PEDRoDB proteomics database and the e-Fungi data warehouse.
MDAs focus on generating software from models that describe aspects of service capabilities, and can be applied to support rapid development of repository interfaces in bioinformatics. The Pierre MDA is capable of supporting common database access requirements with a variety of auto-generated interfaces and across a variety of repositories. With Pierre, four kinds of interfaces are generated: web, stand-alone application, text-menu, and command line. The kinds of repositories with which Pierre interfaces have been used are relational, XML and object databases.
PMCID: PMC1713253  PMID: 17169146
14.  An analysis of extensible modelling for functional genomics data 
BMC Bioinformatics  2005;6:235.
Several data formats have been developed for large scale biological experiments, using a variety of methodologies. Most data formats contain a mechanism for allowing extensions to encode unanticipated data types. Extensions to data formats are important because the experimental methodologies tend to be fairly diverse and rapidly evolving, which hinders the creation of formats that will be stable over time.
In this paper we review the data formats that exist in functional genomics, some of which have become de facto or de jure standards, with a particular focus on how each domain has been modelled, and how each format allows extensions. We describe the tasks that are frequently performed over data formats and analyse how well each task is supported by a particular modelling structure.
From our analysis, we make recommendations as to the types of modelling structure that are most suitable for particular types of experimental annotation. There are several standards currently under development that we believe could benefit from systematically following a set of guidelines.
PMCID: PMC1262694  PMID: 16188029
15.  PEDRo: A database for storing, searching and disseminating experimental proteomics data 
BMC Genomics  2004;5:68.
Proteomics is rapidly evolving into a high-throughput technology, in which substantial and systematic studies are conducted on samples from a wide range of physiological, developmental, or pathological conditions. Reference maps from 2D gels are widely circulated. However, there is, as yet, no formally accepted standard representation to support the sharing of proteomics data, and little systematic dissemination of comprehensive proteomic data sets.
This paper describes the design, implementation and use of a Proteome Experimental Data Repository (PEDRo), which makes comprehensive proteomics data sets available for browsing, searching and downloading. It is also serves to extend the debate on the level of detail at which proteomics data should be captured, the sorts of facilities that should be provided by proteome data management systems, and the techniques by which such facilities can be made available.
The PEDRo database provides access to a collection of comprehensive descriptions of experimental data sets in proteomics. Not only are these data sets interesting in and of themselves, they also provide a useful early validation of the PEDRo data model, which has served as a starting point for the ongoing standardisation activity through the Proteome Standards Initiative of the Human Proteome Organisation.
PMCID: PMC521486  PMID: 15377392
16.  A critical and Integrated View of the Yeast Interactome 
Global studies of protein–protein interactions are crucial to both elucidating gene function and producing an integrated view of the workings of living cells. High-throughput studies of the yeast interactome have been performed using both genetic and biochemical screens. Despite their size, the overlap between these experimental datasets is very limited. This could be due to each approach sampling only a small fraction of the total interactome. Alternatively, a large proportion of the data from these screens may represent false-positive interactions. We have used the Genome Information Management System (GIMS) to integrate interactome datasets with transcriptome and protein annotation data and have found significant evidence that the proportion of false-positive results is high. Not all high-throughput datasets are similarly contaminated, and the tandem affinity purification (TAP) approach appears to yield a high proportion of reliable interactions for which corroborating evidence is available. From our integrative analyses, we have generated a set of verified interactome data for yeast.
PMCID: PMC2447467  PMID: 18629175

Results 1-16 (16)