PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  2-DE proteomics analysis of drought treated seedlings of Quercus ilex supports a root active strategy for metabolic adaptation in response to water shortage 
Holm oak is a dominant tree in the western Mediterranean region. Despite being well adapted to dry hot climate, drought is the main cause of mortality post-transplanting in reforestation programs. An active response to drought is critical for tree establishment and survival. Applying a gel-based proteomic approach, dynamic changes in root proteins of drought treated Quercus ilex subsp. Ballota [Desf.] Samp. seedlings were followed. Water stress was applied on 20 day-old holm oak plantlets by water limitation for a period of 10 and 20 days, each followed by 10 days of recovery. Stress was monitored by changes in water status, plant growth, and electrolyte leakage. Contrary to leaves, holm oak roots responded readily to water shortage at physiological level by growth inhibition, changes in water status and membrane stability. Root proteins were extracted using trichloroacetate/acetone/phenol protocol and separated by two-dimensional electrophoresis. Coomassie colloidal stained gel images were analyzed and spot intensity data subjected to multivariate statistical analysis. Selected consistent spots in three biological replicas, presenting significant changes under stress, were subjected to MALDI-TOF mass spectrometry (peptide mass fingerprinting and MS/MS). For protein identification, combined search was performed with MASCOT search engine over NCBInr Viridiplantae and Uniprot databases. Data are available via ProteomeXchange with identifier PXD002484. Identified proteins were classified into functional groups: metabolism, protein biosynthesis and proteolysis, defense against biotic stress, cellular protection against abiotic stress, intracellular transport. Several enzymes of the carbohydrate metabolism decreased in abundance in roots under drought stress while some related to ATP synthesis and secondary metabolism increased. Results point at active metabolic adjustment and mobilization of the defense system in roots to actively counteract drought stress.
doi:10.3389/fpls.2015.00627
PMCID: PMC4536546  PMID: 26322068
holm oak; roots; drought; recovery; proteomics
2.  The mzQuantML Data Standard for Mass Spectrometry–based Quantitative Studies in Proteomics* 
The range of heterogeneous approaches available for quantifying protein abundance via mass spectrometry (MS)1 leads to considerable challenges in modeling, archiving, exchanging, or submitting experimental data sets as supplemental material to journals. To date, there has been no widely accepted format for capturing the evidence trail of how quantitative analysis has been performed by software, for transferring data between software packages, or for submitting to public databases. In the context of the Proteomics Standards Initiative, we have developed the mzQuantML data standard. The standard can represent quantitative data about regions in two-dimensional retention time versus mass/charge space (called features), peptides, and proteins and protein groups (where there is ambiguity regarding peptide-to-protein inference), and it offers limited support for small molecule (metabolomic) data. The format has structures for representing replicate MS runs, grouping of replicates (for example, as study variables), and capturing the parameters used by software packages to arrive at these values. The format has the capability to reference other standards such as mzML and mzIdentML, and thus the evidence trail for the MS workflow as a whole can now be described. Several software implementations are available, and we encourage other bioinformatics groups to use mzQuantML as an input, internal, or output format for quantitative software and for structuring local repositories. All project resources are available in the public domain from the HUPO Proteomics Standards Initiative http://www.psidev.info/mzquantml.
doi:10.1074/mcp.O113.028506
PMCID: PMC3734589  PMID: 23599424
3.  The Gel Electrophoresis Markup Language (GelML) from the Proteomics Standards Initiative 
Proteomics  2010;10(17):3073-3081.
The Human Proteome Organisation’s Proteomics Standards Initiative (HUPO-PSI) has developed the GelML data exchange format for representing gel electrophoresis experiments performed in proteomics investigations. The format closely follows the reporting guidelines for gel electrophoresis, which are part of the Minimum Information About a Proteomics Experiment (MIAPE) set of modules. GelML supports the capture of metadata (such as experimental protocols) and data (such as gel images) resulting from gel electrophoresis so that laboratories can be compliant with the MIAPE Gel Electrophoresis guidelines, while allowing such data sets to be exchanged or downloaded from public repositories. The format is sufficiently flexible to capture data from a broad range of experimental processes, and complements other PSI formats for mass spectrometry data and the results of protein and peptide identifications to capture entire gel-based proteome workflows. GelML has resulted from the open standardisation process of PSI consisting of both public consultation and anonymous review of the specifications.
doi:10.1002/pmic.201000120
PMCID: PMC3193076  PMID: 20677327
data standard; gel electrophoresis; database; ontology
4.  A DIGE study on the effects of salbutamol on the rat muscle proteome - an exemplar of best practice for data sharing in proteomics 
BMC Research Notes  2011;4:86.
Background
Proteomic techniques allow researchers to perform detailed analyses of cellular states and many studies are published each year, which highlight large numbers of proteins quantified in different samples. However, currently few data sets make it into public databases with sufficient metadata to allow other groups to verify findings, perform data mining or integrate different data sets. The Proteomics Standards Initiative has released a series of "Minimum Information About a Proteomics Experiment" guideline documents (MIAPE modules) and accompanying data exchange formats. This article focuses on proteomic studies based on gel electrophoresis and demonstrates how the corresponding MIAPE modules can be fulfilled and data deposited in public databases, using a new experimental data set as an example.
Findings
We have performed a study of the effects of an anabolic agent (salbutamol) at two different time points on the protein complement of rat skeletal muscle cells, quantified by difference gel electrophoresis. In the DIGE study, a total of 31 non-redundant proteins were identified as being potentially modulated at 24 h post treatment and 110 non redundant proteins at 96 h post-treatment. Several categories of function have been highlighted as strongly enriched, providing candidate proteins for further study. We also use the study as an example of best practice for data deposition.
Conclusions
We have deposited all data sets from this study in public databases for further analysis by the community. We also describe more generally how gel-based protein identification data sets can now be deposited in the PRoteomics IDEntifications database (PRIDE), using a new software tool, the PRIDESpotMapper, which we developed to work in conjunction with the PRIDE Converter application. We also demonstrate how the ProteoRed MIAPE generator tool can be used to create and share a complete and compliant set of MIAPE reports for this experiment and others.
doi:10.1186/1756-0500-4-86
PMCID: PMC3080311  PMID: 21443781

Results 1-4 (4)