Search tips
Search criteria

Results 1-25 (30)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
1.  Correction: Combinatorial Recruitment of CREB, C/EBPβ and c-Jun Determines Activation of Promoters upon Keratinocyte Differentiation 
PLoS ONE  2013;8(12):10.1371/annotation/0cd737c6-949b-48f9-8bc8-ab36376c03e3.
PMCID: PMC3878901
2.  Combinatorial Recruitment of CREB, C/EBPβ and c-Jun Determines Activation of Promoters upon Keratinocyte Differentiation 
PLoS ONE  2013;8(11):e78179.
Transcription factors CREB, C/EBPβ and Jun regulate genes involved in keratinocyte proliferation and differentiation. We questioned if specific combinations of CREB, C/EBPβ and c-Jun bound to promoters correlate with RNA polymerase II binding, mRNA transcript levels and methylation of promoters in proliferating and differentiating keratinocytes.
Induction of mRNA and RNA polymerase II by differentiation is highest when promoters are bound by C/EBP β alone, C/EBPβ together with c-Jun, or by CREB, C/EBPβ and c-Jun, although in this case CREB binds with low affinity. In contrast, RNA polymerase II binding and mRNA levels change the least upon differentiation when promoters are bound by CREB either alone or in combination with C/EBPβ or c-Jun. Notably, promoters bound by CREB have relatively high levels of RNA polymerase II binding irrespective of differentiation. Inhibition of C/EBPβ or c-Jun preferentially represses mRNA when gene promoters are bound by corresponding transcription factors and not CREB. Methylated promoters have relatively low CREB binding and, accordingly, those which are bound by C/EBPβ are induced by differentiation irrespective of CREB. Composite “Half and Half” consensus motifs and co localizing consensus DNA binding motifs are overrepresented in promoters bound by the combination of corresponding transcription factors.
Correlational and functional data describes combinatorial mechanisms regulating the activation of promoters. Colocalization of C/EBPβ and c-Jun on promoters without strong CREB binding determines high probability of activation upon keratinocyte differentiation.
PMCID: PMC3820678  PMID: 24244291
3.  Inhibition of Leptin Regulation of Parasympathetic Signaling as a Cause of Extreme Body Weight-Associated Asthma 
Cell metabolism  2013;17(1):10.1016/j.cmet.2012.12.004.
Impaired lung function caused by decreased airway diameter (bronchoconstriction) is frequently observed whether body weight is abnormally high or low. That these opposite conditions affect the airways similarly suggests that the regulation of airway diameter and body weight are intertwined. We show here that, independently of its regulation of appetite, melanocortin pathway, or sympathetic tone, leptin is necessary and sufficient to increase airway diameter by signaling through its cognate receptor in cholinergic neurons. The latter decreases parasympathetic signaling through the M3 muscarinic receptor in airway smooth muscle cells, thereby increasing airway diameter without affecting local inflammation. Accordingly, decreasing parasympathetic tone genetically or pharmacologically corrects bronchoconstriction and normalizes lung function in obese mice regardless of bronchial inflammation. This study reveals an adipocyte-dependent regulation of bronchial diameter whose disruption contributes to the impaired lung function caused by abnormal body weight. These findings may be of use in the management of obesity-associated asthma.
PMCID: PMC3815545  PMID: 23312282
4.  CG methylation 
Epigenomics  2012;4(6):655-663.
A striking feature of mammalian genomes is the paucity of the CG dinucleotide. There are approximately 20,000 regions termed CpG islands where CGs cluster. This represents 5% of all CGs and 1% of the genome. CpG islands are typically unmethylated and are often promoters for housekeeping genes. The remaining 95% of CG dinucleotides are disposed throughout 99% of the genome and are typically methylated and found in half of all promoters. CG methylation facilitates binding of the C/EBP family of transcription factors, proteins critical for differentiation of many tissues. This allows these proteins to localize in the methylated CG poor regions of the genome where they may produce advantageous changes in gene expression at nearby or more distant regions of the genome. In this review, our growing understanding of the consequences of CG methylation will be surveyed.
PMCID: PMC3566568  PMID: 23244310
C/EBP; CG; CG dinucleotide; CGI; CpG; CpG island; cytosine; methylation; TFBS; tissue specific
5.  CpG methylation recruits sequence specific transcription factors essential for tissue specific gene expression 
Biochimica et Biophysica Acta  2012;1819(7):763-770.
CG methylation is an epigenetically inherited chemical modification of DNA found in plants and animals. In mammals it is essential for accurate regulation of gene expression and normal development. Mammalian genomes are depleted for the CG dinucleotide, a result of the chemical deamination of methyl-cytosine in CG resulting in TpG. Most CG dinucleotides are methylated, but ~ 15% are unmethylated. Five percent of CGs cluster into ~20,000 regions termed CG islands (CGI) which are generally unmethylated. About half of CGIs are associated with housekeeping genes. In contrast, the gene body, repeats and transposable elements in which CGs are generally methylated. Unraveling the epigenetic machinery operating in normal cells is important for understanding the epigenetic aberrations that are involved in human diseases including cancer. With the advent of high-throughput sequencing technologies, it is possible to identify the CG methylation status of all 30 million unique CGs in the human genome, and monitor differences in distinct cell types during differentiation and development. Here we summarize the present understanding of DNA methylation in normal cells and discuss resent observations that CG methylation can have an effect on tissue specific gene expression. We also discuss how aberrant CG methylation can lead to cancer.
PMCID: PMC3371161  PMID: 22387149
Epigenetics; DNA methylation; transcription; CpG Island; Cancer; 5-azacytidine
6.  Contribution of nucleosome binding preferences and co-occurring DNA sequences to transcription factor binding 
BMC Genomics  2013;14:428.
Chromatin plays a critical role in regulating transcription factors (TFs) binding to their canonical transcription factor binding sites (TFBS). Recent studies in vertebrates show that many TFs preferentially bind to genomic regions that are well bound by nucleosomes in vitro. Co-occurring secondary motifs sometimes correlated with functional TFBS.
We used a logistic regression to evaluate how well the propensity for nucleosome binding and co-occurrence of a secondary motif identify which canonical motifs are bound in vivo. We used ChIP-seq data for three transcription factors binding to their canonical motifs: c-Jun binding the AP-1 motif (TGAC/GTCA), GR (glucocorticoid receptor) binding the GR motif (G-ACA---T/CGT-C), and Hoxa2 (homeobox a2) binding the Pbx (Pre-B-cell leukemia homeobox) motif (TGATTGAT). For all canonical TFBS in the mouse genome, we calculated intrinsic nucleosome occupancy scores (INOS) for its surrounding 150-bps DNA and examined the relationship with in vivo TF binding. In mouse mammary 3134 cells, c-Jun and GR proteins preferentially bound regions calculated to be well-bound by nucleosomes in vitro with the canonical AP-1 and GR motifs themselves contributing to the high INOS. Functional GR motifs are enriched for AP-1 motifs if they are within a nucleosome-sized 150-bps region. GR and Hoxa2 also bind motifs with low INOS, perhaps indicating a different mechanism of action.
Our analysis quantified the contribution of INOS and co-occurring sequence to the identification of functional canonical motifs in the genome. This analysis revealed an inherent competition between some TFs and nucleosomes for binding canonical TFBS. GR and c-Jun cooperate if they are within 150-bps. Binding of Hoxa2 and a fraction of GR to motifs with low INOS values suggesting they are not in competition with nucleosomes and may function using different mechanisms.
PMCID: PMC3700821  PMID: 23805837
TFBS; Nucleosome; GR; c-Jun
7.  Deficiency of CCAAT/enhancer binding protein family DNA binding prevents malignant conversion of adenoma to carcinoma in NNK-induced lung carcinogenesis in the mouse 
Molecular Cancer  2012;11:90.
The CCAAT/enhancer binding proteins (C/EBPs) play important roles in carcinogenesis of many tumors including the lung. Since multiple C/EBPs are expressed in lung, the combinatorial expression of these C/EBPs on lung carcinogenesis is not known.
A transgenic mouse line expressing a dominant negative A-C/EBP under the promoter of lung epithelial Clara cell secretory protein (CCSP) gene in doxycycline dependent fashion was subjected to 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced lung carcinogenesis bioassay in the presence and absence of doxycycline, and the effect of abolition of DNA binding activities of C/EBPs on lung carcinogenesis was examined.
A-C/EBP expression was found not to interfere with tumor development; however, it suppressed the malignant conversion of adenoma to carcinoma during NNK-induced lung carcinogenesis. The results suggested that Ki67 may be used as a marker for lung carcinomas in mouse.
The DNA binding of C/EBP family members can be used as a potential molecular target for lung cancer therapy.
PMCID: PMC3548712  PMID: 23234329
C/EBPs; Lung chemical carcinogenesis bioassay; Dominant negative; A-C/EBP; Transgenic mouse; 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone; NNK
8.  Overlapping ETS and CRE Motifs (G/CCGGAAGTGACGTCA) Preferentially Bound by GABPα and CREB Proteins 
G3: Genes|Genomes|Genetics  2012;2(10):1243-1256.
Previously, we identified 8-bps long DNA sequences (8-mers) that localize in human proximal promoters and grouped them into known transcription factor binding sites (TFBS). We now examine split 8-mers consisting of two 4-mers separated by 1-bp to 30-bps (X4-N1-30-X4) to identify pairs of TFBS that localize in proximal promoters at a precise distance. These include two overlapping TFBS: the ETS⇔ETS motif (C/GCCGGAAGCGGAA) and the ETS⇔CRE motif (C/GCGGAAGTGACGTCAC). The nucleotides in bold are part of both TFBS. Molecular modeling shows that the ETS⇔CRE motif can be bound simultaneously by both the ETS and the B-ZIP domains without protein-protein clashes. The electrophoretic mobility shift assay (EMSA) shows that the ETS protein GABPα and the B-ZIP protein CREB preferentially bind to the ETS⇔CRE motif only when the two TFBS overlap precisely. In contrast, the ETS domain of ETV5 and CREB interfere with each other for binding the ETS⇔CRE. The 11-mer (CGGAAGTGACG), the conserved part of the ETS⇔CRE motif, occurs 226 times in the human genome and 83% are in known regulatory regions. In vivo GABPα and CREB ChIP-seq peaks identified the ETS⇔CRE as the most enriched motif occurring in promoters of genes involved in mRNA processing, cellular catabolic processes, and stress response, suggesting that a specific class of genes is regulated by this composite motif.
PMCID: PMC3464117  PMID: 23050235
proximal promoters; transcription factor binding sites; co-localization; transcriptional start site; EMSA
9.  The Biology of Tobacco and Nicotine: Bench to Bedside 
Strong epidemiologic evidence links smoking and cancer. An increased understanding of the molecular biology of tobacco-related cancers could advance progress toward improving smoking cessation and patient management. Knowledge gaps between tobacco addiction, tumorigenesis, and cancer brought an interdisciplinary group of investigators together to discuss “The Biology of Nicotine and Tobacco: Bench to Bedside.” Presentations on the signaling pathways and pathogenesis in tobacco-related cancers, mouse models of addiction, imaging and regulation of nicotinic receptors, the genetic basis for tobacco carcinogenesis and development of lung cancer, and molecular mechanisms of carcinogenesis were heard. Importantly, new opportunities to use molecular biology to identify and abrogate tobacco-mediated carcinogenesis and to identify high-risk individuals were recognized.
PMCID: PMC3459058  PMID: 15824140
10.  Transcription Factor AP1 Potentiates Chromatin Accessibility and Glucocorticoid Receptor Binding 
Molecular cell  2011;43(1):145-155.
Ligand-dependent transcription by the nuclear receptor glucocorticoid receptor (GR) is mediated by interactions with co-regulators. The role of these interactions in determining selective binding of GR to regulatory elements remains unclear. Recent findings indicate a large fraction of genomic GR binding coincides with chromatin that is accessible prior to hormone treatment, suggesting that receptor binding is dictated by proteins that maintain chromatin in an open state. Combining DNaseI accessibility and chromatin immunoprecipitation with high-throughput sequencing, we identify the activator protein 1 (AP1) as a major partner for productive GR-chromatin interactions. AP1 is critical for GR-regulated transcription and recruitment to co-occupied regulatory elements, illustrating an extensive AP1-GR interaction network. Importantly, the maintenance of baseline chromatin accessibility facilitates GR recruitment and is dependent on AP1 binding. We propose a model where the basal occupancy of transcription factors act to prime chromatin and direct inducible transcription factors to select regions in the genome.
PMCID: PMC3138120  PMID: 21726817
11.  Suppression of the C/EBP family of transcription factors in adipose tissue causes lipodystrophy 
Adipose-specific inactivation of both AP-1 and C/EBP families of B-ZIP transcription factors in transgenic mice causes severe lipoatrophy. To evaluate if inactivation of only C/EBP members was critical for lipoatrophy, A-C/EBP, a dominant-negative protein that specifically inhibits the DNA binding of the C/EBP members, was expressed in adipose tissue. For first 2 weeks after birth, aP2-A-C/EBP mice had no white adipose tissue(WAT), drastically reduced brown adipose tissue(BAT) and exhibited marked hepatic steatosis, hyperinsulinemia, and hyperlipidemia. However, WAT appeared during the third week, coinciding with significantly improved metabolic functioning. In adults, BAT remained reduced, causing cold intolerance. At 30 weeks, the aP2-A-C/EBP mice had only 35% reduced WAT, with clear morphological signs of lipodystrophy in subcutaneous fat. Circulating leptin and adiponectin levels were less than the wild type levels and these mice exhibited impaired triglyceride clearance. Insulin resistance, glucose intolerance, and reduced free fatty acid release in response to β3-adrenergic agonist suggest improper functioning of the residual WAT. Gene-expression analysis of inguinal WAT identified reduced mRNA levels of several enzymes involved in fatty acid synthesis and glucose metabolism that are known C/EBPα transcriptional targets. There were increased levels for genes involved in inflammation and muscle differentiation. However, when dermal-fibroblasts from aP2-A-C/EBP mice were differentiated into adipocytes in tissue culture, muscle markers were elevated more than the inflammatory markers. These results demonstrate that the C/EBP family is essential for adipose tissue development during the early postnatal period, contribute to glucose and lipid homeostasis in adults, and the suppression of the muscle lineage.
PMCID: PMC3159190  PMID: 21321096
C/EBP; dominant negative; adipose tissue; diabetes; lipodystrophy; transgenic mouse
12.  Opposing Roles for ATF2 and c-Fos in c-Jun-Mediated Neuronal Apoptosis▿  
Molecular and Cellular Biology  2009;29(9):2431-2442.
The activator protein 1 (AP-1) transcription factor c-Jun is crucial for neuronal apoptosis. However, c-Jun dimerization partners and the regulation of these proteins in neuronal apoptosis remain unknown. Here we report that c-Jun-mediated neuronal apoptosis requires the concomitant activation of activating transcription factor-2 (ATF2) and downregulation of c-Fos. Furthermore, we have observed that c-Jun predominantly heterodimerizes with ATF2 and that the c-Jun/ATF2 complex promotes apoptosis by triggering ATF activity. Inhibition of c-Jun/ATF2 heterodimerization using dominant negative mutants, small hairpin RNAs, or decoy oligonucleotides was able to rescue neurons from apoptosis, whereas constitutively active ATF2 and c-Jun mutants were found to synergistically stimulate apoptosis. Bimolecular fluorescence complementation analysis confirmed that, in living neurons, c-Fos downregulation facilitates c-Jun/ATF2 heterodimerization. A chromatin immunoprecipitation assay also revealed that c-Fos expression prevents the binding of c-Jun/ATF2 heterodimers to conserved ATF sites. Moreover, the presence of c-Fos is able to suppress the expression of c-Jun/ATF2-mediated target genes and, therefore, apoptosis. Taken together, our findings provide evidence that potassium deprivation-induced neuronal apoptosis is mediated by concurrent upregulation of c-Jun/ATF2 heterodimerization and downregulation of c-Fos expression. This paradigm demonstrates opposing roles for ATF2 and c-Fos in c-Jun-mediated neuronal apoptosis.
PMCID: PMC2668374  PMID: 19255142
13.  5′UTR of the Neurogenic bHLH Nex1/MATH-2/NeuroD6 Gene Is Regulated by Two Distinct Promoters Through CRE and C/EBP Binding Sites 
Expression of the bHLH transcription factor Nex1/MATH-2/NeuroD6, a member of the NeuroD subfamily, parallels overt neuronal differentiation and synaptogenesis during brain development. Our previous studies have shown that Nex1 is a critical effector of the NGF pathway and promotes neuronal differentiation and survival of PC12 cells in the absence of growth factors. In this study, we investigated the transcriptional regulation of the Nex1 gene during NGF-induced neuronal differentiation. We found that Nex1 expression is under the control of two conserved promoters, Nex1-P1 and Nex1-P2, located in two distinct non-coding exons. Both promoters are TATA-less with multiple transcription start sites, and are activated on NGF or cAMP exposure. Luciferase-reporter assays showed that the Nex1-P2 promoter activity is stronger than the Nex1-P1 promoter activity, which supports the previously reported differential expression levels of Nex1 transcripts throughout brain development. Using a combination of DNaseI footprinting, EMSA assays, and site-directed mutagenesis, we identified the essential regulatory elements within the first 2 kb of the Nex1 5′UTR. The Nex1-P1 promoter is mainly regulated by a conserved CRE element, whereas the Nex1-P2 promoter is under the control of a conserved C/EBP binding site. Overexpression of wild-type C/EBPβ resulted in increased Nex1-P2 promoter activity in NGF-differentiated PC12 cells. The fact that Nex1 is a target gene of C/EBPβ provides new insight into the C/EBP transcriptional cascade known to promote neurogenesis, while repressing gliogenesis.
PMCID: PMC2767119  PMID: 17075921
neuronal differentiation; bHLH transcription factor; C/EBP; CREB; NeuroD family
14.  A combined yeast/bacterial two-hybrid system (YBTH): development and evaluation 
Two-hybrid screening is a standard methodology to identify and characterize protein-protein interactions that has become an integral component of many proteomic investigations. The two-hybrid system was initially developed using yeast as a host organism. However, bacterial two-hybrid systems have also become common laboratory tools and are preferred in some circumstances, although yeast and bacterial two-hybrid systems have never been directly compared. We describe here the development of a unified yeast and bacterial two-hybrid (YBTH) system in which a single bait expression plasmid is used in both organismal milieus. We use a series of leucine zipper fusion proteins of known affinities to compare interaction detection using both systems. While both two-hybrid systems detected interactions within a comparable range of interaction affinities, each demonstrated unique advantages. The yeast system produced quantitative readout over a greater dynamic range than that observed with bacteria. However, the phenomenon of “auto-activation” by baits was less problematic in the bacterial system than in yeast. Both systems identified physiological interactors for a library screen with a cI-Ras test bait; however, non-identical interactors were obtained in yeast and bacterial screens. The ability to rapidly shift between yeast and bacterial systems provided by these new reagents should provide a marked advantage for two-hybrid investigations. In addition, the modified expression vectors should be useful for any application requiring facile expression of a protein of interest in both yeast and bacteria.
PMCID: PMC2670611  PMID: 15781424
Two-hybrid; protein-protein interaction; leucine zipper; Ras; bacteria; yeast
15.  Inhibiting AP-1 activity alters cocaine induced gene expression and potentiates sensitization 
Neuroscience  2008;152(4):1040-1053.
We have expressed A-FOS, an inhibitor of AP-1 DNA binding, in adult mouse striatal neurons. We observe normal behavior including locomotion and exploratory activities. Following a single injection of cocaine, locomotion increased similarly in both the A-FOS expressing and littermate controls. However, following repeated injections of cocaine, the A-FOS expressing mice showed increased locomotion relative to littermate controls, an increase that persisted following a week of withdrawal and subsequent cocaine administration. These results indicate that AP-1 suppresses this behavioral responses to cocaine. We analyzed mRNA from the striatum before and 4 and 24 hours after a single cocaine injection in both A-FOS and control striata using Affymetrix microarrays (430 2.0 Array) to identify genes mis-regulated by A-FOS that may mediate the increased locomotor sensitization to cocaine. A-FOS expression did not change gene expression in the basal state or 4 hours following cocaine treatment relative to controls. However, 24 hours after an acute cocaine treatment, 84 genes were identified that were differentially expressed between the A-FOS and control mice. 56 gene are down regulated while 28 genes are up regulated including previously identified candidates for addiction including BDNF and Per1. Using a random sample of identified genes, quantitative PCR was used to verify the microarray studies. The chromosomal location of these 84 genes was compared to human genome scans of addiction to identify potential genes in humans that are involved in addiction.
PMCID: PMC2585517  PMID: 18355967
A-FOS; addiction; sensitization; gene expression
16.  All and only CpG containing sequences are enriched in promoters abundantly bound by RNA polymerase II in multiple tissues 
BMC Genomics  2008;9:67.
The promoters of housekeeping genes are well-bound by RNA polymerase II (RNAP) in different tissues. Although the promoters of these genes are known to contain CpG islands, the specific DNA sequences that are associated with high RNAP binding to housekeeping promoters has not been described.
ChIP-chip experiments from three mouse tissues, liver, heart ventricles, and primary keratinocytes, indicate that 94% of promoters have similar RNAP binding, ranging from well-bound to poorly-bound in all tissues. Using all 8-base pair long sequences as a test set, we have identified the DNA sequences that are enriched in promoters of housekeeping genes, focusing on those DNA sequences which are preferentially localized in the proximal promoter. We observe a bimodal distribution. Virtually all sequences enriched in promoters with high RNAP binding values contain a CpG dinucleotide. These results suggest that only transcription factor binding sites (TFBS) that contain the CpG dinucleotide are involved in RNAP binding to housekeeping promoters while TFBS that do not contain a CpG are involved in regulated promoter activity. Abundant 8-mers that are preferentially localized in the proximal promoters and exhibit the best enrichment in RNAP bound promoters are all variants of six known CpG-containing TFBS: ETS, NRF-1, BoxA, SP1, CRE, and E-Box. The frequency of these six DNA motifs can predict housekeeping promoters as accurately as the presence of a CpG island, suggesting that they are the structural elements critical for CpG island function. Experimental EMSA results demonstrate that methylation of the CpG in the ETS, NRF-1, and SP1 motifs prevent DNA binding in nuclear extracts in both keratinocytes and liver.
In general, TFBS that do not contain a CpG are involved in regulated gene expression while TFBS that contain a CpG are involved in constitutive gene expression with some CpG containing sequences also involved in inducible and tissue specific gene regulation. These TFBS are not bound when the CpG is methylated. Unmethylated CpG dinucleotides in the TFBS in CpG islands allow the transcription factors to find their binding sites which occur only in promoters, in turn localizing RNAP to promoters.
PMCID: PMC2267717  PMID: 18252004
17.  Refined Spatial Manipulation of Neuronal Function by Combinatorial Restriction of Transgene Expression 
Neuron  2006;52(3):425-436.
Selective genetic manipulation of neuronal function in vivo requires techniques for targeting gene expression to specific cells. Existing systems accomplish this using the promoters of endogenous genes to drive expression of transgenes directly in cells of interest, or, in “binary” systems, to drive expresssion of a transcription factor or recombinase that subsequently activates the expression of other transgenes. All such techniques are constrained by the limited specificity of the available promoters. We introduce here a combinatorial system in which the DNA-binding (DBD) and transcription activation (AD) domains of a transcription factor are independently targeted using two different promoters. The domains heterodimerize to become transcriptionally competent and thus drive trangene expression only at the intersection of the expression patterns of the two promoters. We use this system to dissect a neuronal network in Drosophila by selectively targeting expression of the cell death gene reaper to subsets of neurons within the network.
PMCID: PMC1713190  PMID: 17088209
Gene Targeting; Transgenic; Gal4; Neural Network; Circuit; Drosophila
18.  Math6 expression during kidney development and altered expression in a mouse model of glomerulosclerosis 
Math6 is a tissue-restricted member of the Atonal family of bHLH transcription factors and has been implicated in specification and differentiation of cell lineages in the brain. We identify here Math6 as a podocyte expressed bHLH protein that was downregulated in HIV-associated nephropathy; a collapsing glomerulopathy characterized by podocyte dedifferentiation. Early in metanephric development, Math6 was expressed in metanephric mesenchyme, but not ureteric bud-derived cells, with overall Math6 expression most abundant in the nephrogenic zone, including developing glomeruli. In adult kidney, Math6 expression was restricted to podocytes. In adult podocyte cell lines and kidneys from the transgenic mouse model of HIVAN, Math6 podocyte expression was reduced concurrent with previously reported reductions in Nephrin and Synaptopodin expression, suggesting a correlation between the loss of Math6 expression and typical podocyte terminal differentiation markers. These studies suggest that Math6 may participate in kidney development, and may be a permissive factor for podocyte differentiation.
PMCID: PMC2203212  PMID: 16937370
podocyte; HIV-associated nephropathy; HIV-1; transcriptional regulation grant support: NIH DK61395
19.  AFos Dissociates Cardiac Myocyte Hypertrophy and Expression of the Pathological Gene Program 
Circulation  2005;111(13):1645-1651.
Although induction of activator protein-1 (AP-1) transcription factor activity has been observed in cardiac hypertrophy, a direct role for AP-1 in myocardial growth and gene expression remains obscure.
Methods and Results
Hypertrophy was induced in cultured neonatal rat cardiomyocytes with phenylephrine or overexpression of a constitutively active MAP3K, MKK6. In both treatment groups, induction of the pathological gene profile was observed, ie, expression of β-myosin heavy chain (βMHC), atrial/brain natriuretic peptides (ANP/BNP), and skeletal α-actin (sACT) was increased, whereas expression for α-myosin heavy chain (αMHC) and the sarcoplasmic reticulum Ca2+-ATPase (SERCA) genes was repressed. The role of AP-1 in the hypertrophic phenotype was evaluated with the use of an adenoviral construct expressing a dominant negative mutant of the c-Fos proto-oncogene (AdAFos). Although AFos did not change the myocyte growth response, it abrogated the gene profile to both agonists, including the upregulation of both αMHC and SERCA expression.
Although c-Fos/AP-1 is necessary for induction of the pathological/fetal gene program, it does not appear to be critical for cardiomyocyte hypertrophy.
PMCID: PMC1201436  PMID: 15795322
hypertrophy; signal transduction; myocytes; molecular biology
20.  Hypotension, lipodystrophy, and insulin resistance in generalized PPARγ-deficient mice rescued from embryonic lethality 
Journal of Clinical Investigation  2007;117(3):812-822.
We rescued the embryonic lethality of global PPARγ knockout by breeding Mox2-Cre (MORE) mice with floxed PPARγ mice to inactivate PPARγ in the embryo but not in trophoblasts and created a generalized PPARγ knockout mouse model, MORE-PPARγ knockout (MORE-PGKO) mice. PPARγ inactivation caused severe lipodystrophy and insulin resistance; surprisingly, it also caused hypotension. Paradoxically, PPARγ agonists had the same effect. We showed that another mouse model of lipodystrophy was hypertensive, ruling out the lipodystrophy as a cause. Further, high salt loading did not correct the hypotension in MORE-PGKO mice. In vitro studies showed that the vasculature from MORE-PGKO mice was more sensitive to endothelial-dependent relaxation caused by muscarinic stimulation, but was not associated with changes in eNOS expression or phosphorylation. In addition, vascular smooth muscle had impaired contraction in response to α-adrenergic agents. The renin-angiotensin-aldosterone system was mildly activated, consistent with increased vascular capacitance or decreased volume. These effects are likely mechanisms contributing to the hypotension. Our results demonstrated that PPARγ is required to maintain normal adiposity and insulin sensitivity in adult mice. Surprisingly, genetic loss of PPARγ function, like activation by agonists, lowered blood pressure, likely through a mechanism involving increased vascular relaxation.
PMCID: PMC1794117  PMID: 17304352
21.  Comparative genomics of Drosophila and human core promoters 
Genome Biology  2006;7(7):R53.
Comparison of DNA sequence distributions in Drosophila and human promoters suggests that different motifs have distinct functional roles.
The core promoter region plays a critical role in the regulation of eukaryotic gene expression. We have determined the non-random distribution of DNA sequences relative to the transcriptional start site in Drosophila melanogaster promoters to identify sequences that may be biologically significant. We compare these results with those obtained for human promoters.
We determined the distribution of all 65,536 octamer (8-mers) DNA sequences in 10,914 Drosophila promoters and two sets of human promoters aligned relative to the transcriptional start site. In Drosophila, 298 8-mers have highly significant (p ≤ 1 × 10-16) non-random distributions peaking within 100 base-pairs of the transcriptional start site. These sequences were grouped into 15 DNA motifs. Ten motifs, termed directional motifs, occur only on the positive strand while the remaining five motifs, termed non-directional motifs, occur on both strands. The only directional motifs to localize in human promoters are TATA, INR, and DPE. The directional motifs were further subdivided into those precisely positioned relative to the transcriptional start site and those that are positioned more loosely relative to the transcriptional start site. Similar numbers of non-directional motifs were identified in both species and most are different. The genes associated with all 15 DNA motifs, when they occur in the peak, are enriched in specific Gene Ontology categories and show a distinct mRNA expression pattern, suggesting that there is a core promoter code in Drosophila.
Drosophila and human promoters use different DNA sequences to regulate gene expression, supporting the idea that evolution occurs by the modulation of gene regulation.
PMCID: PMC1779564  PMID: 16827941
22.  Dimerization specificity of all 67 B-ZIP motifs in Arabidopsis thaliana: a comparison to Homo sapiens B-ZIP motifs 
Nucleic Acids Research  2004;32(11):3435-3445.
Basic region-leucine zipper (B-ZIP) proteins are a class of dimeric sequence-specific DNA-binding proteins unique to eukaryotes. We have identified 67 B-ZIP proteins in the Arabidopsis thaliana genome. No A.thaliana B-ZIP domains are homologous with any Homo sapiens B-ZIP domains. Here, we predict the dimerization specificity properties of the 67 B-ZIP proteins in the A.thaliana genome based on three structural properties of the dimeric α-helical leucine zipper coiled coil structure: (i) length of the leucine zipper, (ii) placement of asparagine or a charged amino acid in the hydrophobic interface and (iii) presence of interhelical electrostatic interactions. Many A.thaliana B-ZIP leucine zippers are predicted to be eight or more heptads in length, in contrast to the four or five heptads typically found in H.sapiens, a prediction experimentally verified by circular dichroism analysis. Asparagine in the a position of the coiled coil is typically observed in the second heptad in H.sapiens. In A.thaliana, asparagine is abundant in the a position of both the second and fifth heptads. The particular placement of asparagine in the a position helps define 14 families of homodimerizing B-ZIP proteins in A.thaliana, in contrast to the six families found in H.sapiens. The repulsive interhelical electrostatic interactions that are used to specify heterodimerizing B-ZIP proteins in H.sapiens are not present in A.thaliana. Instead, we predict that plant leucine zippers rely on charged amino acids in the a position to drive heterodimerization. It appears that A.thaliana define many families of homodimerizing B-ZIP proteins by having long leucine zippers with asparagine judiciously placed in the a position of different heptads.
PMCID: PMC443529  PMID: 15226410
23.  Reciprocal Roles for CCAAT/Enhancer Binding Protein (C/EBP) and PU.1 Transcription Factors in Langerhans Cell Commitment 
Myeloid progenitor cells give rise to a variety of progenies including dendritic cells. However, the mechanism controlling the diversification of myeloid progenitors into each progeny is largely unknown. PU.1 and CCAAT/enhancing binding protein (C/EBP) family transcription factors have been characterized as key regulators for the development and function of the myeloid system. However, the roles of C/EBP transcription factors have not been fully identified because of functional redundancy among family members. Using high titer–retroviral infection, we demonstrate that a dominant-negative C/EBP completely blocked the granulocyte–macrophage commitment of human myeloid progenitors. Alternatively, Langerhans cell (LC) commitment was markedly facilitated in the absence of tumor necrosis factor (TNF)α, a strong inducer of LC development, whereas expression of wild-type C/EBP in myeloid progenitors promoted granulocytic differentiation, and completely inhibited TNFα-dependent LC development. On the other hand, expression of wild-type PU.1 in myeloid progenitors triggered LC development in the absence of TNFα, and its instructive effect was canceled by coexpressed C/EBP. Our findings establish reciprocal roles for C/EBP and PU.1 in LC development, and provide new insight into the molecular mechanism of LC development, which has not yet been well characterized.
PMCID: PMC2193769  PMID: 11877478
myeloid differentiation; lineage commitment; dendritic cells; eosinophils; dominant-negative C/EBP
25.  Magnesium is required for specific DNA binding of the CREB B-ZIP domain 
Nucleic Acids Research  2002;30(5):1240-1246.
We have examined binding of the CREB B-ZIP protein domain to double-stranded DNA containing a consensus CRE sequence (5′-TGACGTCA-3′), the related PAR, C/EBP and AP-1 sequences and the unrelated SP1 sequence. DNA binding was assayed in the presence or absence of MgCl2 and/or KCl using two methods: circular dichroism (CD) spectroscopy and electrophoretic mobility shift assay (EMSA). The CD assay allows us to measure equilibrium binding in solution. Thermal denaturation in 150 mM KCl indicates that the CREB B-ZIP domain binds all the DNA sequences, with highest affinity for the CRE site, followed by the PAR (5′-TAACGTTA-3′), C/EBP (5′-TTGCGCAA-3′) and AP-1 (5′-TGAGTCA-3′) sites. The addition of 10 mM MgCl2 diminished DNA binding to the CRE and PAR DNA sequences and abolished binding to the C/EBP and AP-1 DNA sequences, resulting in more sequence-specific DNA binding. Using ‘standard’ EMSA conditions (0.25× TBE), CREB bound all the DNA sequences examined. The CREB–CRE complex had an apparent Kd of ∼300 pM, PAR of ∼1 nM, C/EBP and AP-1 of ∼3 nM and SP1 of ∼30 nM. The addition of 10 mM MgCl2 to the polyacrylamide gel dramatically altered sequence-specific DNA binding. CREB binding affinity for CRE DNA decreased 3-fold, but binding to the other DNA sequences decreased >1000-fold. In the EMSA, addition of 150 mM KCl to the gels had an effect similar to MgCl2. The magnesium concentration needed to prevent non-specific electrostatic interactions between CREB and DNA in solution is in the physiological range and thus changes in magnesium concentration may be a cellular signal that regulates gene expression.
PMCID: PMC101231  PMID: 11861917

Results 1-25 (30)