PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-7 (7)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Regular Adult Aspirin Use Decreases the Risk of Non-Small Cell Lung Cancer among Women 
Background
Prior studies indicate that use of aspirin or other nonsteroidal anti-inflammatory drugs (NSAID) is associated with a decreased risk of non-small cell lung cancer (NSCLC); however, results have been contradictory in part because of variation in study design. Few studies have examined the use of aspirin or other NSAIDs on risk of NSCLC in women.
Methods
Through a case-control study of African American and Caucasian women with and without NSCLC, we examined the relationship between use of aspirin, NSAIDs, and acetaminophen and risk of NSCLC. Risk was estimated by calculating odds ratios and 95% confidence intervals for ever/never use, duration of use, and duration of use category (never, 1–5 years, >5 years) after adjusting for major risk factors for lung cancer. Risk estimates were stratified by race, age, smoking history, and body mass index.
Results
Ever use of adult-strength aspirin was associated with a significant reduction in risk of NSCLC (odds ratio, 0.66; 95% confidence interval, 0.46–0.94). Additionally, there was a significant trend toward a reduced risk of NSCLC in adult-strength aspirin users with increasing duration of use (Ptrend = 0.02). In stratified analyses, aspirin use was associated with a significantly reduced risk of lung cancer among Caucasians and 55- to 64-year-olds. Baby aspirin and NSAID use was associated with a significant reduction in risk of NSCLC only among 65- to 74-year-olds.
Conclusion
Our results suggest that long-term use of adult-strength aspirin may reduce the risk of NSCLC in women.
doi:10.1158/1055-9965.EPI-07-0517
PMCID: PMC3771076  PMID: 18187393
2.  Cytokine and Cytokine Receptor Single-Nucleotide Polymorphisms Predict Risk for Non–Small Cell Lung Cancer among Women 
Studies on the relationships between inflammatory pathway genes and lung cancer risk have not included African-Americans and have only included a handful of genes. In a population-based case-control study on 198 African-American and 744 Caucasian women, we examined the association between 70 cytokine and cytokine receptor single-nucleotide polymorphisms (SNPs) and risk of non–small cell lung cancer (NSCLC). Unconditional logistic regression was used to estimate odds ratios and 95% confidence intervals in a dominant model adjusting for major risk factors for lung cancer. Separate analyses were conducted by race and by smoking history and history of chronic obstructive pulmonary disease among Caucasians. Random forest analysis was conducted by race. On logistic regression analysis, IL6 (interleukin 6), IL7R, IL15, TNF (tumor necrosis factor), and IL10 SNP were associated with risk of non–small cell lung cancer among African-Americans; IL7R and IL10 SNPs were also associated with risk of lung cancer among Caucasians. Although random forest analysis showed IL7R and IL10 SNPs as being associated with risk for lung cancer among African-Americans, it also identified TNFRSF10A SNP as an important predictor. On random forest analysis, an IL1A SNP was identified as an important predictor of lung cancer among Caucasian women. Inflammatory SNPs differentially predicted risk for NSCLC according to race, as well as based on smoking history and history of chronic obstructive pulmonary disease among Caucasian women. Pathway analysis results are presented. Inflammatory pathway genotypes may serve to define a high risk group; further exploration of these genes in minority populations is warranted.
doi:10.1158/1055-9965.EPI-08-0962
PMCID: PMC3771080  PMID: 19505916
3.  Admixture mapping of lung cancer in 1812 African-Americans 
Carcinogenesis  2010;32(3):312-317.
Lung cancer continues to be the leading cause of cancer death in the USA and the best example of a cancer with undisputed evidence of environmental risk. However, a genetic contribution to lung cancer has also been demonstrated by studies of familial aggregation, family-based linkage, candidate gene studies and most recently genome-wide association studies (GWAS). The African-American population has been underrepresented in these genetic studies and has patterns of cigarette use and linkage disequilibrium that differ from patterns in other populations. Therefore, studies in African-Americans can provide complementary data to localize lung cancer susceptibility genes and explore smoking dependence-related genes. We used admixture mapping to further characterize genetic risk of lung cancer in a series of 837 African-American lung cancer cases and 975 African-American controls genotyped at 1344 ancestry informative single-nucleotide polymorphisms. Both case-only and case–control analyses were conducted using ADMIXMAP adjusted for age, sex, pack-years of smoking, family history of lung cancer, history of emphysema and study site. In case-only analyses, excess European ancestry was observed over a wide region on chromosome 1 with the largest excess seen at rs6587361 for non-small-cell lung cancer (NSCLC) (Z-score = −4.33; P = 1.5 × 10−5) and for women with NSCLC (Z-score = −4.82; P = 1.4 × 10−6). Excess African ancestry was also observed on chromosome 3q with a peak Z-score of 3.33 (P = 0.0009) at rs181696 among ever smokers with NSCLC. These results add to the findings from the GWAS in Caucasian populations and suggest novel regions of interest.
doi:10.1093/carcin/bgq252
PMCID: PMC3047238  PMID: 21115650
4.  Cytokine SNPs: Comparison of Allele Frequencies by Race & Implications for Future Studies 
Cytokine  2009;46(2):236-244.
The role of inflammation is being considered in chronic diseases. Previous studies have examined SNPs in a few key inflammatory genes and have included small numbers of African American participants. Variation in the frequencies of inflammatory pathway SNPs may help to explain racial disparities in disease risk. Through a population-based study of 103 African American and 380 Caucasian unrelated, healthy women, we examined the relationships between race and allele frequencies of 70 cytokine and cytokine receptor SNPs. The associations between genotypic and haplotype frequencies and race were also analyzed. Allelic frequencies for 52 out of the 70 SNPs meeting criteria for analysis differed significantly by race. Of the 32 pro-inflammatory and 20 anti-inflammatory SNPs for which the allele frequencies varied significantly by race, variant allele frequency differences between Caucasians and African Americans ranged between 6%–37% and 7%–53% for pro-inflammatory SNPs and anti-inflammatory SNPs, respectively. Our findings suggest that while allele frequencies do vary by race, racial groups are not simplistically represented by a pro-inflammatory or anti-inflammatory genetic profile. Given the racial variability in allele frequencies in inflammatory gene SNPs, studies examining the association between these SNPs and disease should at least incorporate self-reported race in their analyses.
doi:10.1016/j.cyto.2009.02.003
PMCID: PMC2742911  PMID: 19356949
Cytokines; SNPs; Racial Differences; Women
5.  Tobacco and estrogen metabolic polymorphisms and risk of non-small cell lung cancer in women 
Carcinogenesis  2009;30(4):626-635.
To explore the potential role for estrogen in lung cancer susceptibility, candidate single-nucleotide polymorphism (SNPs) in tobacco and estrogen metabolism genes were evaluated. Population-based cases (n = 504) included women aged 18–74, diagnosed with NSCLC in metropolitan Detroit between November 2001 and October 2005. Population-based controls (n = 527) were identified through random digit dialing and matched on race and age. Eleven SNPs in 10 different genes were examined in relation to risk: CYP1A1 Msp1, CYP1A1 Ile462Val, CYP1B1 Leu432Val, CYP17, CYP19A1, XRCC1 Gln399Arg, COMT Val158Met, NQO1 Pro187Ser, GSTM1, GSTT1 and GSTP1 Ile105Val. Lung cancer risk associated with individual SNPs was seen for GSTP1 [A allele; odds ratio (OR) = 1.85; 95% confidence interval (CI), 1.04–3.27] and XRCC1 (A/A genotype; OR = 1.68; 95% CI, 1.01–2.79) in white women and CYP1B1 (G allele; OR = 11.1; 95% CI, 1.18–104) in black women smokers. White women smokers carrying two risk genotypes at the following loci were at increased risk of lung cancer compared with individuals not carrying risk alleles at these loci: CYP17 and GSTM1, COMT and GSTM1, CYP17 and GSTT1, XRCC1 and GSTP1, CYP1B1 and XRCC1 and COMT and XRCC1. The most parsimonious model of lung cancer risk in white smoking women included age, family history of lung cancer, history of chronic lung disease, pack-years, body mass index, XRCC1 A/A genotype, GSTM1 null and COMT A/G or G/G genotype. These findings support the need for continued study of estrogen in relation to lung cancer risk. Polymorphisms in the tobacco metabolism, estrogen metabolism and DNA repair pathways will be useful in developing more predictive models of individual risk.
doi:10.1093/carcin/bgp033
PMCID: PMC2664455  PMID: 19174490
6.  Chromosome 5p Region SNPs Are Associated with Risk of NSCLC among Women 
Journal of Cancer Epidemiology  2010;2009:242151.
In a population-based case-control study, we explored the associations between 42 polymorphisms in seven genes in this region and non-small cell lung cancer (NSCLC) risk among Caucasian (364 cases; 380 controls) and African American (95 cases; 103 controls) women. Two TERT region SNPs, rs2075786 and rs2853677, conferred an increased risk of developing NSCLC, especially among African American women, and TERT-rs2735940 was associated with a decreased risk of lung cancer among African Americans. Five of the 20 GHR polymorphisms and SEPP1-rs6413428 were associated with a marginally increased risk of NSCLC among Caucasians. Random forest analysis reinforced the importance of GHR among Caucasians and identified AMACR, TERT, and GHR among African Americans, which were also significant using gene-based risk scores. Smoking-SNP interactions were explored, and haplotypes in TERT and GHR associated with NSCLC risk were identified. The roles of TERT, GHR, AMACR and SEPP1 genes in lung carcinogenesis warrant further exploration.
doi:10.1155/2009/242151
PMCID: PMC2861408  PMID: 20445798
7.  COX-2/EGFR expression and survival among women with adenocarcinoma of the lung 
Carcinogenesis  2008;29(9):1781-1787.
Previous studies suggest that cyclooxygenase-2 (COX-2) expression may predict survival among patients with non-small cell lung cancer. COX-2 may interact with epidermal growth factor receptor (EGFR), suggesting that combined COX-2/EGFR expression may provide predictive value. The extent to which their independent or combined expression is associated with prognosis in women with adenocarcinoma of the lung is unknown. In the present study, we examined relationships between COX-2 expression (n = 238), EGFR expression (n = 158) and dual COX-2/EGFR expression (n = 157) and survival among women with adenocarcinoma of the lung. Overall survival was estimated by constructing Cox proportional hazards models adjusting for other significant variables and stratifying by stage at diagnosis and race. Clinical or demographic parameters were not associated with either COX-2 or EGFR expression. Patients with COX-2-positive tumors tended to have poorer prognosis than did patients with COX-2-negative tumors [hazard ratio (HR) 1.67, 95% confidence interval (CI) 1.01–2.78]. African-Americans with COX-2-positive tumors had a statistically non-significant higher risk of death than African-Americans with COX-2-negative tumors (HR 5.58, 95% CI 0.64–48.37). No association between COX-2 expression and survival was observed among Caucasians (HR 1.29, 95% CI 0.72–2.30). EGFR expression was associated with a 44% reduction in the risk of death (HR 0.56, 95% CI 0.32–0.98). COX-2−/EGFR+ tumor expression, but not COX-2+/EGFR+ tumor expression, was associated with survival when compared with other combined expression results. In conclusion, COX-2 and EGFR expression, but not combined COX-2+/EGFR+ expression, independently predict survival of women with adenocarcinoma of the lung.
doi:10.1093/carcin/bgn107
PMCID: PMC2527644  PMID: 18453539

Results 1-7 (7)