Search tips
Search criteria

Results 1-21 (21)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  A Network-Based Kernel Machine Test for the Identification of Risk Pathways in Genome-Wide Association Studies 
Human heredity  2014;76(2):64-75.
Biological pathways provide rich information and biological context on the genetic causes of complex diseases. The logistic kernel machine test integrates prior knowledge on pathways in order to analyze data from genome-wide association studies (GWAS). Here, the kernel converts genomic information of two individuals to a quantitative value reflecting their genetic similarity. With the selection of the kernel one implicitly chooses a genetic effect model. Like many other pathway methods, none of the available kernels accounts for topological structure of the pathway or gene-gene interaction types. However, evidence indicates that connectivity and neighborhood of genes are crucial in the context of GWAS, because genes associated with a disease often interact. Thus, we propose a novel kernel that incorporates the topology of pathways and information on interactions. Using simulation studies, we demonstrate that the proposed method maintains the type I error correctly and can be more effective in the identification of pathways associated with a disease than non-network-based methods. We apply our approach to genome-wide association case control data on lung cancer and rheumatoid arthritis. We identify some promising new pathways associated with these diseases, which may improve our current understanding of the genetic mechanisms.
PMCID: PMC4026009  PMID: 24434848
Kernel Machine Test; Pathways; Networks; Gene-Gene Interactions; Score Test; Generalized Linear Model; Lung Cancer; Rheumatoid Arthritis; Disease Association; Genetic Association Studies
2.  Rare variants of large effect in BRCA2 and CHEK2 affect risk of lung cancer 
Wang, Yufei | McKay, James D. | Rafnar, Thorunn | Wang, Zhaoming | Timofeeva, Maria | Broderick, Peter | Zong, Xuchen | Laplana, Marina | Wei, Yongyue | Han, Younghun | Lloyd, Amy | Delahaye-Sourdeix, Manon | Chubb, Daniel | Gaborieau, Valerie | Wheeler, William | Chatterjee, Nilanjan | Thorleifsson, Gudmar | Sulem, Patrick | Liu, Geoffrey | Kaaks, Rudolf | Henrion, Marc | Kinnersley, Ben | Vallée, Maxime | LeCalvez-Kelm, Florence | Stevens, Victoria L. | Gapstur, Susan M. | Chen, Wei V. | Zaridze, David | Szeszenia-Dabrowska, Neonilia | Lissowska, Jolanta | Rudnai, Peter | Fabianova, Eleonora | Mates, Dana | Bencko, Vladimir | Foretova, Lenka | Janout, Vladimir | Krokan, Hans E. | Gabrielsen, Maiken Elvestad | Skorpen, Frank | Vatten, Lars | Njølstad, Inger | Chen, Chu | Goodman, Gary | Benhamou, Simone | Vooder, Tonu | Valk, Kristjan | Nelis, Mari | Metspalu, Andres | Lener, Marcin | Lubiński, Jan | Johansson, Mattias | Vineis, Paolo | Agudo, Antonio | Clavel-Chapelon, Francoise | Bueno-de-Mesquita, H.Bas | Trichopoulos, Dimitrios | Khaw, Kay-Tee | Johansson, Mikael | Weiderpass, Elisabete | Tjønneland, Anne | Riboli, Elio | Lathrop, Mark | Scelo, Ghislaine | Albanes, Demetrius | Caporaso, Neil E. | Ye, Yuanqing | Gu, Jian | Wu, Xifeng | Spitz, Margaret R. | Dienemann, Hendrik | Rosenberger, Albert | Su, Li | Matakidou, Athena | Eisen, Timothy | Stefansson, Kari | Risch, Angela | Chanock, Stephen J. | Christiani, David C. | Hung, Rayjean J. | Brennan, Paul | Landi, Maria Teresa | Houlston, Richard S. | Amos, Christopher I.
Nature genetics  2014;46(7):736-741.
We conducted imputation to the 1000 Genomes Project of four genome-wide association studies of lung cancer in populations of European ancestry (11,348 cases and 15,861 controls) and genotyped an additional 10,246 cases and 38,295 controls for follow-up. We identified large-effect genome-wide associations for squamous lung cancer with the rare variants of BRCA2-K3326X (rs11571833; odds ratio [OR]=2.47, P=4.74×10−20) and of CHEK2-I157T (rs17879961; OR=0.38 P=1.27×10−13). We also showed an association between common variation at 3q28 (TP63; rs13314271; OR=1.13, P=7.22×10−10) and lung adenocarcinoma previously only reported in Asians. These findings provide further evidence for inherited genetic susceptibility to lung cancer and its biological basis. Additionally, our analysis demonstrates that imputation can identify rare disease-causing variants having substantive effects on cancer risk from pre-existing GWAS data.
PMCID: PMC4074058  PMID: 24880342
3.  Empirical Hierarchical Bayes Approach to Gene-Environment Interactions: Development and Application to Genome-Wide Association Studies of Lung Cancer in TRICL 
Genetic epidemiology  2013;37(6):551-559.
The analysis of gene-environment (GxE) interactions remains one of the greatest challenges in the post-genome-wide-association-studies (GWAS) era. Recent methods constitute a compromise between the robust but underpowered case-control and powerful case-only methods. Inferences of the latter are biased when the assumption of gene-environment (G-E) independence fails. We propose a novel empirical hierarchical Bayes approach to GxE interaction (EHB-GE), which benefits from greater power while accounting for population-based G-E dependence. Building on Lewinger et al.'s ([2007] Genet Epidemiol 31:871-882) hierarchical Bayes prioritization approach, the method utilizes posterior G-E association estimates in controls based on G-E information across the genome to adjust for it in resulting test statistics. These posteriori estimates are subtracted from the corresponding G-E association coefficients within cases.
We compared EHB-GE with rival methods using simulation. EHB-GE has similar or greater rank power to detect GxE interactions in the presence of large numbers of G-E associations with weak to strong effects or only a low number of such associations with large effect. When there are no or only a few weak G-E associations, Murcray et al.'s method ([2009] Am J Epidemiol 169:219-226) identifies markers with low GxE interaction effects better. We applied EHB-GE and competing methods to four lung cancer case-control GWAS from the TRICL/ILCCO consortium with smoking as environmental factor. Genes identified by the EHB-GE approach are reasonable candidates, suggesting usefulness of the method.
PMCID: PMC4082246  PMID: 23893921
population G-E association; GWAS; rank power; lung cancer
4.  Hierarchical modeling identifies novel lung cancer susceptibility variants in inflammation pathways among 10,140 cases and 11,012 controls 
Human genetics  2013;132(5):579-589.
Recent evidence suggests that inflammation plays a pivotal role in the development of lung cancer. In this study, we used a two-stage approach to investigate associations between genetic variants in inflammation pathways and lung cancer risk based on genome-wide association study (GWAS) data. A total of 7,650 sequence variants from 720 genes relevant to inflammation pathways were identified using keyword and pathway searches from Gene Cards and Gene Ontology databases. In Stage 1, six GWAS datasets from the International Lung Cancer Consortium were pooled (4,441 cases and 5,094 controls of European ancestry), and a hierarchical modeling (HM) approach was used to incorporate prior information for each of the variants into the analysis. The prior matrix was constructed using (1) role of genes in the inflammation and immune pathways; (2) physical properties of the variants including the location of the variants, their conservation scores and amino acid coding; (3) LD with other functional variants and (4) measures of heterogeneity across the studies. HM affected the priority ranking of variants particularly among those having low prior weights, imprecise estimates and/or heterogeneity across studies. In Stage 2, we used an independent NCI lung cancer GWAS study (5,699 cases and 5,818 controls) for in silico replication. We identified one novel variant at the level corrected for multiple comparisons (rs2741354 in EPHX2 at 8q21.1 with p value = 7.4 × 10−6), and confirmed the associations between TERT (rs2736100) and the HLA region and lung cancer risk. HM allows for prior knowledge such as from bioinformatic sources to be incorporated into the analysis systematically, and it represents a complementary analytical approach to the conventional GWAS analysis.
PMCID: PMC3628758  PMID: 23370545
5.  Pleiotropic Associations of Risk Variants Identified for Other Cancers With Lung Cancer Risk: The PAGE and TRICL Consortia 
Genome-wide association studies have identified hundreds of genetic variants associated with specific cancers. A few of these risk regions have been associated with more than one cancer site; however, a systematic evaluation of the associations between risk variants for other cancers and lung cancer risk has yet to be performed.
We included 18023 patients with lung cancer and 60543 control subjects from two consortia, Population Architecture using Genomics and Epidemiology (PAGE) and Transdisciplinary Research in Cancer of the Lung (TRICL). We examined 165 single-nucleotide polymorphisms (SNPs) that were previously associated with at least one of 16 non–lung cancer sites. Study-specific logistic regression results underwent meta-analysis, and associations were also examined by race/ethnicity, histological cell type, sex, and smoking status. A Bonferroni-corrected P value of 2.5×10–5 was used to assign statistical significance.
The breast cancer SNP LSP1 rs3817198 was associated with an increased risk of lung cancer (odds ratio [OR] = 1.10; 95% confidence interval [CI] = 1.05 to 1.14; P = 2.8×10–6). This association was strongest for women with adenocarcinoma (P = 1.2×10–4) and not statistically significant in men (P = .14) with this cell type (P het by sex = .10). Two glioma risk variants, TERT rs2853676 and CDKN2BAS1 rs4977756, which are located in regions previously associated with lung cancer, were associated with increased risk of adenocarcinoma (OR = 1.16; 95% CI = 1.10 to 1.22; P = 1.1×10–8) and squamous cell carcinoma (OR = 1.13; CI = 1.07 to 1.19; P = 2.5×10–5), respectively.
Our findings demonstrate a novel pleiotropic association between the breast cancer LSP1 risk region marked by variant rs3817198 and lung cancer risk.
PMCID: PMC3982896  PMID: 24681604
6.  Epigenetic screen identifies genotype- specific promoter DNA methylation and oncogenic potential of CHRNB4 
Oncogene  2012;32(28):3329-3338.
Genome-wide association studies have highlighted three major lung cancer susceptibility regions at 15q25.1, 5p15.33 and 6p21.33. To gain insight into the possible mechanistic relevance of the genes in these regions, we investigated the regulation of candidate susceptibility gene expression by epigenetic alterations in healthy and lung tumor tissues. For genes up- or downregulated in lung tumors the influence of genetic variants on DNA methylation was investigated and in vitro studies were performed.
We analyzed 394 CpG units within 19 CpG islands in the susceptibility regions in a screening set of 34 patients. Significant findings were validated in an independent patient set (n=50) with available DNA and RNA. The most consistent overall DNA methylation difference between tumor and adjacent normal tissue on 15q25 was tumor hypomethylation in the promoter region of CHRNB4 with a median difference of 8% (p<0.001) which resulted in overexpression of the transcript in tumors (p<0.001). Confirming previous studies we also found hypermethylation in CHRNA3 and TERT with significant expression changes. Decitabine treatment of H1299 cells resulted in reduced methylation levels in gene promoters, elevated transcript levels of CHRNB4 and CHRNA3 and a slight downregulation of TERT demonstrating epigenetic regulation of lung cancer cells. SNPs rs421629 on 5p15.33 and rs1948, rs660652, rs8040868 and rs2036527 on 15q25.1, previously identified as lung cancer risk or nicotine addiction modifiers were associated with tumor DNA methylation levels in the promoters of TERT and CHRNB4 (p<0.001) respectively in two independent sample sets (n=82; n=150). In addition, CHRNB4 knock down in two different cell lines (A549 and H1299) resulted in reduced proliferation (pA549<0.05;pH1299L<0.001) and propensity to form colonies in H1299 cells.
These results suggest epigenetic deregulation of nicotinic acetylcholinereceptor subunit (nAChR) genes which in the case of CHRNB4 is strongly associated with genetic lung cancer susceptibility variants and a functional impact on tumorigenic potential.
PMCID: PMC3710305  PMID: 22945651
DNA methylation; risk factors; non-small cell lung cancer (NSCLC); CHRNB4; TERT
7.  Methylome Analysis and Epigenetic Changes Associated with Menarcheal Age 
PLoS ONE  2013;8(11):e79391.
Reproductive factors have been linked to both breast cancer and DNA methylation, suggesting methylation as an important mechanism by which reproductive factors impact on disease risk. However, few studies have investigated the link between reproductive factors and DNA methylation in humans. Genome-wide methylation in peripheral blood lymphocytes of 376 healthy women from the prospective EPIC study was investigated using LUminometric Methylation Assay (LUMA). Also, methylation of 458877 CpG sites was additionally investigated in an independent group of 332 participants of the EPIC-Italy sub-cohort, using the Infinium HumanMethylation 450 BeadChip. Multivariate logistic regression and linear models were used to investigate the association between reproductive risk factors and genome wide and CpG-specific DNA methylation, respectively. Menarcheal age was inversely associated with global DNA methylation as measured with LUMA. For each yearly increase in age at menarche, the risk of having genome wide methylation below median level was increased by 32% (OR:1.32, 95%CI:1.14–1.53). When age at menarche was treated as a categorical variable, there was an inverse dose-response relationship with LUMA methylation levels (OR12–14vs.≤11 yrs:1.78, 95%CI:1.01–3.17 and OR≥15vs.≤11 yrs:4.59, 95%CI:2.04–10.33; P for trend<0.0001). However, average levels of global methylation as measured by the Illumina technology were not significantly associated with menarcheal age. In locus by locus comparative analyses, only one CpG site had significantly different methylation depending on the menarcheal age category examined, but this finding was not replicated by pyrosequencing in an independent data set. This study suggests a link between age at menarche and genome wide DNA methylation, and the difference in results between the two arrays suggests that repetitive element methylation has a role in the association. Epigenetic changes may be modulated by menarcheal age, or the association may be a mirror of other important changes in early life that have a detectable effect on both methylation levels and menarcheal age.
PMCID: PMC3835804  PMID: 24278132
8.  Increased Genetic Vulnerability to Smoking at CHRNA5 in Early-Onset Smokers 
Hartz, Sarah M. | Short, Susan E. | Saccone, Nancy L. | Culverhouse, Robert | Chen, LiShiun | Schwantes-An, Tae-Hwi | Coon, Hilary | Han, Younghun | Stephens, Sarah H. | Sun, Juzhong | Chen, Xiangning | Ducci, Francesca | Dueker, Nicole | Franceschini, Nora | Frank, Josef | Geller, Frank | Guđbjartsson, Daniel | Hansel, Nadia N. | Jiang, Chenhui | Keskitalo-Vuokko, Kaisu | Liu, Zhen | Lyytikäinen, Leo-Pekka | Michel, Martha | Rawal, Rajesh | Hum, Sc | Rosenberger, Albert | Scheet, Paul | Shaffer, John R. | Teumer, Alexander | Thompson, John R. | Vink, Jacqueline M. | Vogelzangs, Nicole | Wenzlaff, Angela S. | Wheeler, William | Xiao, Xiangjun | Yang, Bao-Zhu | Aggen, Steven H. | Balmforth, Anthony J. | Baumeister, Sebastian E. | Beaty, Terri | Bennett, Siiri | Bergen, Andrew W. | Boyd, Heather A. | Broms, Ulla | Campbell, Harry | Chatterjee, Nilanjan | Chen, Jingchun | Cheng, Yu-Ching | Cichon, Sven | Couper, David | Cucca, Francesco | Dick, Danielle M. | Foroud, Tatiana | Furberg, Helena | Giegling, Ina | Gu, Fangyi | Hall, Alistair S. | Hällfors, Jenni | Han, Shizhong | Hartmann, Annette M. | Hayward, Caroline | Heikkilä, Kauko | Lic, Phil | Hewitt, John K. | Hottenga, Jouke Jan | Jensen, Majken K. | Jousilahti, Pekka | Kaakinen, Marika | Kittner, Steven J. | Konte, Bettina | Korhonen, Tellervo | Landi, Maria-Teresa | Laatikainen, Tiina | Leppert, Mark | Levy, Steven M. | Mathias, Rasika A. | McNeil, Daniel W. | Medland, Sarah E. | Montgomery, Grant W. | Muley, Thomas | Murray, Tanda | Nauck, Matthias | North, Kari | Pergadia, Michele | Polasek, Ozren | Ramos, Erin M. | Ripatti, Samuli | Risch, Angela | Ruczinski, Ingo | Rudan, Igor | Salomaa, Veikko | Schlessinger, David | Styrkársdóttir, Unnur | Terracciano, Antonio | Uda, Manuela | Willemsen, Gonneke | Wu, Xifeng | Abecasis, Goncalo | Barnes, Kathleen | Bickeböller, Heike | Boerwinkle, Eric | Boomsma, Dorret I. | Caporaso, Neil | Duan, Jubao | Edenberg, Howard J. | Francks, Clyde | Gejman, Pablo V. | Gelernter, Joel | Grabe, Hans Jörgen | Hops, Hyman | Jarvelin, Marjo-Riitta | Viikari, Jorma | Kähönen, Mika | Kendler, Kenneth S. | Lehtimäki, Terho | Levinson, Douglas F. | Marazita, Mary L. | Marchini, Jonathan | Melbye, Mads | Mitchell, Braxton D. | Murray, Jeffrey C. | Nöthen, Markus M. | Penninx, Brenda W. | Raitakari, Olli | Rietschel, Marcella | Rujescu, Dan | Samani, Nilesh J. | Sanders, Alan R. | Schwartz, Ann G. | Shete, Sanjay | Shi, Jianxin | Spitz, Margaret | Stefansson, Kari | Swan, Gary E. | Thorgeirsson, Thorgeir | Völzke, Henry | Wei, Qingyi | Wichmann, H.-Erich | Amos, Christopher I. | Breslau, Naomi | Cannon, Dale S. | Ehringer, Marissa | Grucza, Richard | Hatsukami, Dorothy | Heath, Andrew | Johnson, Eric O. | Kaprio, Jaakko | Madden, Pamela | Martin, Nicholas G. | Stevens, Victoria L. | Stitzel, Jerry A. | Weiss, Robert B. | Kraft, Peter | Bierut, Laura J.
Archives of general psychiatry  2012;69(8):854-860.
Recent studies have shown an association between cigarettes per day (CPD) and a nonsynonymous single-nucleotide polymorphism in CHRNA5, rs16969968.
To determine whether the association between rs16969968 and smoking is modified by age at onset of regular smoking.
Data Sources
Primary data.
Study Selection
Available genetic studies containing measures of CPD and the genotype of rs16969968 or its proxy.
Data Extraction
Uniform statistical analysis scripts were run locally. Starting with 94 050 ever-smokers from 43 studies, we extracted the heavy smokers (CPD >20) and light smokers (CPD ≤10) with age-at-onset information, reducing the sample size to 33 348. Each study was stratified into early-onset smokers (age at onset ≤16 years) and late-onset smokers (age at onset >16 years), and a logistic regression of heavy vs light smoking with the rs16969968 genotype was computed for each stratum. Meta-analysis was performed within each age-at-onset stratum.
Data Synthesis
Individuals with 1 risk allele at rs16969968 who were early-onset smokers were significantly more likely to be heavy smokers in adulthood (odds ratio [OR]=1.45; 95% CI, 1.36–1.55; n=13 843) than were carriers of the risk allele who were late-onset smokers (OR = 1.27; 95% CI, 1.21–1.33, n = 19 505) (P = .01).
These results highlight an increased genetic vulnerability to smoking in early-onset smokers.
PMCID: PMC3482121  PMID: 22868939
9.  Informed Conditioning on Clinical Covariates Increases Power in Case-Control Association Studies 
PLoS Genetics  2012;8(11):e1003032.
Genetic case-control association studies often include data on clinical covariates, such as body mass index (BMI), smoking status, or age, that may modify the underlying genetic risk of case or control samples. For example, in type 2 diabetes, odds ratios for established variants estimated from low–BMI cases are larger than those estimated from high–BMI cases. An unanswered question is how to use this information to maximize statistical power in case-control studies that ascertain individuals on the basis of phenotype (case-control ascertainment) or phenotype and clinical covariates (case-control-covariate ascertainment). While current approaches improve power in studies with random ascertainment, they often lose power under case-control ascertainment and fail to capture available power increases under case-control-covariate ascertainment. We show that an informed conditioning approach, based on the liability threshold model with parameters informed by external epidemiological information, fully accounts for disease prevalence and non-random ascertainment of phenotype as well as covariates and provides a substantial increase in power while maintaining a properly controlled false-positive rate. Our method outperforms standard case-control association tests with or without covariates, tests of gene x covariate interaction, and previously proposed tests for dealing with covariates in ascertained data, with especially large improvements in the case of case-control-covariate ascertainment. We investigate empirical case-control studies of type 2 diabetes, prostate cancer, lung cancer, breast cancer, rheumatoid arthritis, age-related macular degeneration, and end-stage kidney disease over a total of 89,726 samples. In these datasets, informed conditioning outperforms logistic regression for 115 of the 157 known associated variants investigated (P-value = 1×10−9). The improvement varied across diseases with a 16% median increase in χ2 test statistics and a commensurate increase in power. This suggests that applying our method to existing and future association studies of these diseases may identify novel disease loci.
Author Summary
This work describes a new methodology for analyzing genome-wide case-control association studies of diseases with strong correlations to clinical covariates, such as age in prostate cancer and body mass index in type 2 diabetes. Currently, researchers either ignore these clinical covariates or apply approaches that ignore the disease's prevalence and the study's ascertainment strategy. We take an alternative approach, leveraging external prevalence information from the epidemiological literature and constructing a statistic based on the classic liability threshold model of disease. Our approach not only improves the power of studies that ascertain individuals randomly or based on the disease phenotype, but also improves the power of studies that ascertain individuals based on both the disease phenotype and clinical covariates. We apply our statistic to seven datasets over six different diseases and a variety of clinical covariates. We found that there was a substantial improvement in test statistics relative to current approaches at known associated variants. This suggests that novel loci may be identified by applying our method to existing and future association studies of these diseases.
PMCID: PMC3493452  PMID: 23144628
10.  Influence of common genetic variation on lung cancer risk: meta-analysis of 14 900 cases and 29 485 controls 
Human Molecular Genetics  2012;21(22):4980-4995.
Recent genome-wide association studies (GWASs) have identified common genetic variants at 5p15.33, 6p21–6p22 and 15q25.1 associated with lung cancer risk. Several other genetic regions including variants of CHEK2 (22q12), TP53BP1 (15q15) and RAD52 (12p13) have been demonstrated to influence lung cancer risk in candidate- or pathway-based analyses. To identify novel risk variants for lung cancer, we performed a meta-analysis of 16 GWASs, totaling 14 900 cases and 29 485 controls of European descent. Our data provided increased support for previously identified risk loci at 5p15 (P = 7.2 × 10−16), 6p21 (P = 2.3 × 10−14) and 15q25 (P = 2.2 × 10−63). Furthermore, we demonstrated histology-specific effects for 5p15, 6p21 and 12p13 loci but not for the 15q25 region. Subgroup analysis also identified a novel disease locus for squamous cell carcinoma at 9p21 (CDKN2A/p16INK4A/p14ARF/CDKN2B/p15INK4B/ANRIL; rs1333040, P = 3.0 × 10−7) which was replicated in a series of 5415 Han Chinese (P = 0.03; combined analysis, P = 2.3 × 10−8). This large analysis provides additional evidence for the role of inherited genetic susceptibility to lung cancer and insight into biological differences in the development of the different histological types of lung cancer.
PMCID: PMC3607485  PMID: 22899653
12.  Comparison of Pathway Analysis Approaches Using Lung Cancer GWAS Data Sets 
PLoS ONE  2012;7(2):e31816.
Pathway analysis has been proposed as a complement to single SNP analyses in GWAS. This study compared pathway analysis methods using two lung cancer GWAS data sets based on four studies: one a combined data set from Central Europe and Toronto (CETO); the other a combined data set from Germany and MD Anderson (GRMD). We searched the literature for pathway analysis methods that were widely used, representative of other methods, and had available software for performing analysis. We selected the programs EASE, which uses a modified Fishers Exact calculation to test for pathway associations, GenGen (a version of Gene Set Enrichment Analysis (GSEA)), which uses a Kolmogorov-Smirnov-like running sum statistic as the test statistic, and SLAT, which uses a p-value combination approach. We also included a modified version of the SUMSTAT method (mSUMSTAT), which tests for association by averaging χ2 statistics from genotype association tests. There were nearly 18000 genes available for analysis, following mapping of more than 300,000 SNPs from each data set. These were mapped to 421 GO level 4 gene sets for pathway analysis. Among the methods designed to be robust to biases related to gene size and pathway SNP correlation (GenGen, mSUMSTAT and SLAT), the mSUMSTAT approach identified the most significant pathways (8 in CETO and 1 in GRMD). This included a highly plausible association for the acetylcholine receptor activity pathway in both CETO (FDR≤0.001) and GRMD (FDR = 0.009), although two strong association signals at a single gene cluster (CHRNA3-CHRNA5-CHRNB4) drive this result, complicating its interpretation. Few other replicated associations were found using any of these methods. Difficulty in replicating associations hindered our comparison, but results suggest mSUMSTAT has advantages over the other approaches, and may be a useful pathway analysis tool to use alongside other methods such as the commonly used GSEA (GenGen) approach.
PMCID: PMC3283683  PMID: 22363742
14.  Replication of Lung Cancer Susceptibility Loci at Chromosomes 15q25, 5p15, and 6p21: A Pooled Analysis From the International Lung Cancer Consortium 
Genome-wide association studies have identified three chromosomal regions at 15q25, 5p15, and 6p21 as being associated with the risk of lung cancer. To confirm these associations in independent studies and investigate heterogeneity of these associations within specific subgroups, we conducted a coordinated genotyping study within the International Lung Cancer Consortium based on independent studies that were not included in previous genome-wide association studies.
Genotype data for single-nucleotide polymorphisms at chromosomes 15q25 (rs16969968, rs8034191), 5p15 (rs2736100, rs402710), and 6p21 (rs2256543, rs4324798) from 21 case–control studies for 11 645 lung cancer case patients and 14 954 control subjects, of whom 85% were white and 15% were Asian, were pooled. Associations between the variants and the risk of lung cancer were estimated by logistic regression models. All statistical tests were two-sided.
Associations between 15q25 and the risk of lung cancer were replicated in white ever-smokers (rs16969968: odds ratio [OR] = 1.26, 95% confidence interval [CI] = 1.21 to 1.32, Ptrend = 2 × 10−26), and this association was stronger for those diagnosed at younger ages. There was no association in never-smokers or in Asians between either of the 15q25 variants and the risk of lung cancer. For the chromosome 5p15 region, we confirmed statistically significant associations in whites for both rs2736100 (OR = 1.15, 95% CI = 1.10 to 1.20, Ptrend = 1 × 10−10) and rs402710 (OR = 1.14, 95% CI = 1.09 to 1.19, Ptrend = 5 × 10−8) and identified similar associations in Asians (rs2736100: OR = 1.23, 95% CI = 1.12 to 1.35, Ptrend = 2 × 10−5; rs402710: OR = 1.15, 95% CI = 1.04 to 1.27, Ptrend = .007). The associations between the 5p15 variants and lung cancer differed by histology; odds ratios for rs2736100 were highest in adenocarcinoma and for rs402710 were highest in adenocarcinoma and squamous cell carcinomas. This pattern was observed in both ethnic groups. Neither of the two variants on chromosome 6p21 was associated with the risk of lung cancer.
In this international genetic association study of lung cancer, previous associations found in white populations were replicated and new associations were identified in Asian populations. Future genetic studies of lung cancer should include detailed stratification by histology.
PMCID: PMC2897877  PMID: 20548021
15.  Genome-wide prediction of splice-modifying SNPs in human genes using a new analysis pipeline called AASsites 
BMC Bioinformatics  2011;12(Suppl 4):S2.
Some single nucleotide polymorphisms (SNPs) are known to modify the risk of developing certain diseases or the reaction to drugs. Due to next generation sequencing methods the number of known human SNPs has grown. Not all SNPs lead to a modified protein, which may be the origin of a disease. Therefore, the recognition of functional SNPs is needed. Because most SNP annotation tools look for SNPs which lead to an amino acid exchange or a premature stop, we designed a new tool called AASsites which searches for SNPs which modify splicing.
AASsites uses several gene prediction programs and open reading frame prediction to compare the wild type (wt) and the variant gene sequence. The results of the comparison are combined by a handmade rule system to classify a change in splicing as “likely, probable, unlikely”. Having received good results from tests with SNPs known for changing the splicing pattern we checked 80,000 SNPs from the human genome which are located near splice sites for their ability to change the splicing pattern of the gene and hereby result in a different protein. We identified 301 “likely” and 985 “probable” classified SNPs with such characteristics. Within this set 33 SNPs are described in the ssSNP Target database to cause modified splicing.
With AASsites single SNPs can be checked for those causing splice modifications. Screening 80,000 known human SNPs we detected about 1,200 SNPs which probably modify splicing. AASsites is available at using any web browser.
PMCID: PMC3194194  PMID: 21992029
16.  International Lung Cancer Consortium: Coordinated association study of 10 potential lung cancer susceptibility variants 
Carcinogenesis  2010;31(4):625-633.
Background. Analysis of candidate genes in individual studies has had only limited success in identifying particular gene variants that are conclusively associated with lung cancer risk. In the International Lung Cancer Consortium (ILCCO), we conducted a coordinated genotyping study of 10 common variants selected because of their prior evidence of an association with lung cancer. These variants belonged to candidate genes from different cancer-related pathways including inflammation (IL1B), folate metabolism (MTHFR), regulatory function (AKAP9 and CAMKK1), cell adhesion (SEZL6) and apoptosis (FAS, FASL, TP53, TP53BP1 and BAT3). Methods. Genotype data from 15 ILCCO case–control studies were available for a total of 8431 lung cancer cases and 11 072 controls of European descent and Asian ethnic groups. Unconditional logistic regression was used to model the association between each variant and lung cancer risk. Results. Only the association between a non-synonymous variant of TP53BP1 (rs560191) and lung cancer risk was significant (OR = 0.91, P = 0.002). This association was more striking for squamous cell carcinoma (OR = 0.86, P = 6 × 10−4). No heterogeneity by center, ethnicity, smoking status, age group or sex was observed. In order to confirm this association, we included results for this variant from a set of independent studies (9966 cases/11 722 controls) and we reported similar results. When combining all these studies together, we reported an overall OR = 0.93 (0.89–0.97) (P = 0.001). This association was significant only for squamous cell carcinoma [OR = 0.89 (0.85–0.95), P = 1 × 10−4]. Conclusion. This study suggests that rs560191 is associated to lung cancer risk and further highlights the value of consortia in replicating or refuting published genetic associations.
PMCID: PMC2847090  PMID: 20106900
17.  Meta- and Pooled Analysis of GSTP1 Polymorphism and Lung Cancer: A HuGE-GSEC Review 
American Journal of Epidemiology  2009;169(7):802-814.
Lung cancer is the most common cancer worldwide. Polymorphisms in genes associated with carcinogen metabolism may modulate risk of disease. Glutathione S-transferase pi (GSTP1) detoxifies polycyclic aromatic hydrocarbons found in cigarette smoke and is the most highly expressed glutathione S-transferase in lung tissue. A polymorphism in the GSTP1 gene, an A-to-G transition in exon 5 (Ile105Val, 313A → 313G), results in lower activity among individuals who carry the valine allele. The authors present a meta- and a pooled analysis of case-control studies that examined the association between this polymorphism in GSTP1 and lung cancer risk (27 studies, 8,322 cases and 8,844 controls and 15 studies, 4,282 cases and 5,032 controls, respectively). Overall, the meta-analysis found no significant association between lung cancer risk and the GSTP1 exon 5 polymorphism. In the pooled analysis, there was an overall association (odds ratio = 1.11, 95% confidence interval: 1.03, 1.21) between lung cancer and carriage of the GSTP1 Val/Val or Ile/Val genotype compared with those carrying the Ile/Ile genotype. Increased risk varied by histologic type in Asians. There appears to be evidence for interaction between amount of smoking, the GSTP1 exon 5 polymorphism, and risk of lung cancer in whites.
PMCID: PMC2727222  PMID: 19240225
Asian continental ancestry group; epidemiology; glutathione S-transferase pi; GSTP1; lung neoplasms; smoking
18.  Genetic Polymorphisms in Genes Related to Oxidative Stress (GSTP1, GSTM1, GSTT1, CAT, MnSOD, MPO, eNOS) and Survival of Rectal Cancer Patients after Radiotherapy 
Journal of Cancer Epidemiology  2009;2009:302047.
Radiotherapy exerts part of its antineoplastic effect by generating oxidative stress, therefore genetic variation in oxidative stress-related enzymes may influence survival of rectal cancer patients. We hypothesized that genetic polymorphisms associated with higher amounts of reactive oxygen species (ROS) that exaggerate cytotoxic activity could improve survival after radiotherapy. We followed 114 rectal cancer patients who received radiotherapy for an average of 42.5 months. Associations between genotypes (GSTP1, GSTM1, GSTT1, CAT, MnSOD, MPO and eNOS) and overall survival were assessed using Kaplan-Meier curves and Cox proportional hazards regression. As hypothesized, patients carrying low ROS producing eNOS Glu298Asp asparagine allele showed an increased hazard of death compared to homozygous carriers of the glutamine allele (hazard ratio (HR): 2.10, 95% confidence interval (CI): 1.01–4.38). However, carriers of low ROS producing MPO G463A A allele had a decreased hazard of death compared to patients homozygous for the G allele (HR: 0.44, 95% CI: 0.21–0.93) although patients homozygous for the A allele had a slightly increased hazard (HR: 1.12, 95% CI: 0.25–5.08). This explorative study provides first results and highlights the need for further, larger studies to investigate association between genetic variation in oxidative stress genes and survival of rectal cancer patients who received radiotherapy.
PMCID: PMC2859029  PMID: 20445800
19.  International Lung Cancer Consortium: Pooled Analysis of Sequence Variants in DNA Repair and Cell Cycle Pathways 
The International Lung Cancer Consortium was established in 2004. To clarify the role of DNA repair genes in lung cancer susceptibility, we conducted a pooled analysis of genetic variants in DNA repair pathways, whose associations have been investigated by at least 3 individual studies.
Data from 14 studies were pooled for 18 sequence variants in 12 DNA repair genes, including APEX1, OGG1, XRCC1, XRCC2, XRCC3, ERCC1, XPD, XPF, XPG, XPA, MGMT, and TP53. The total number of subjects included in the analysis for each variant ranged from 2,073 to 13,955 subjects.
Four of the variants were found to be weakly associated with lung cancer risk with borderline significance: these were XRCC3 T241M [heterozygote odds ratio (OR), 0.89; 95% confidence interval (95% CI), 0.79–0.99 and homozygote OR, 0.84; 95% CI, 0.71–1.00] based on 3,467 cases and 5,021 controls from 8 studies, XPD K751Q (heterozygote OR, 0.99; 95% CI, 0.89–1.10 and homozygote OR, 1.19; 95% CI, 1.02–1.39) based on 6,463 cases and 6,603 controls from 9 studies, and TP53 R72P (heterozygote OR, 1.14; 95% CI, 1.00–1.29 and homozygote OR, 1.20; 95% CI, 1.02–1.42) based on 3,610 cases and 5,293 controls from 6 studies. OGG1 S326C homozygote was suggested to be associated with lung cancer risk in Caucasians (homozygote OR, 1.34; 95% CI, 1.01–1.79) based on 2,569 cases and 4,178 controls from 4 studies but not in Asians. The other 14 variants did not exhibit main effects on lung cancer risk.
In addition to data pooling, future priorities of International Lung Cancer Consortium include coordinated genotyping and multistage validation for ongoing genome-wide association studies.
PMCID: PMC2756735  PMID: 18990748
20.  Early onset lung cancer, cigarette smoking and the SNP309 of the murine double minute-2 (MDM2) gene 
BMC Cancer  2008;8:113.
The polymorphism SNP309 (rs2279744) in the promoter region of the MDM2 gene has been shown to alter protein expression and may play a role in the susceptibility to lung cancer. The MDM2 protein is a key inhibitor of p53 and several mechanisms of MDM2/p53 interactions are presently known: modulating DNA-repair, cell-cycle control, cell growth and apoptosis.
We used 635 Caucasian patients diagnosed with lung cancer before 51 years of age and 1300 healthy gender and age frequency matched population Caucasian controls to investigate the association between the MDM2 SNP309 and the risk of developing early onset lung cancer. Conditional logistic models were applied to assess the genotype-phenotype association, adjusted for smoking.
Compared to the GG genotype, the adjusted ORs for the TG and TT genotype were 0.9 (95% CI: 0.7–1.5) and 1.0 (95% CI: 0.7–1.5), respectively. Also no association was found for histological subtypes of lung cancer. The strength of this study is that within young cases the genetic component to develop lung cancer may be greater. Our results indicate that the MDM2 SNP309 is not significantly associated with lung carcinogenesis but point towards gender-specific differences.
PMCID: PMC2377274  PMID: 18433484
21.  SULT1A1 genotype, active and passive smoking, and breast cancer risk by age 50 years in a German case–control study 
Breast Cancer Research  2005;7(2):R229-R237.
Sulfotransferase 1A1 (encoded by SULT1A1) is involved in the metabolism of procarcinogens such as heterocyclic amines and polycyclic aromatic hydrocarbons, both of which are present in tobacco smoke. We recently reported a differential effect of N-acetyltransferase (NAT) 2 genotype on the association between active and passive smoking and breast cancer. Additional investigation of a common SULT1A1 genetic polymorphism associated with reduced enzyme activity and stability might therefore provide deeper insight into the modification of breast cancer susceptibility.
We conducted a population-based case–control study in Germany. A total of 419 patients who had developed breast cancer by age 50 years and 884 age-matched control individuals, for whom risk factor information and detailed smoking history were available, were included in the analysis. Genotyping was performed using a fluorescence-based melting curve analysis method. Multivariate logistic regression analysis was used to estimate breast cancer risk associated with the SULT1A1 Arg213His polymorphism alone and in combination with NAT2 genotype in relation to smoking.
The overall risk for breast cancer in women who were carriers of at least one SULT1A1*2 allele was not significantly different from that for women with the SULT1A1*1/*1 genotype (adjusted odds ratio 0.83, 95% confidence interval 0.66–1.06). Risk for breast cancer with respect to several smoking variables did not differ substantially between carriers of the *2 allele and noncarriers. However, among NAT2 fast acetylators, the odds ratio associated with passive smoking only (3.23, 95% confidence interval 1.05–9.92) was elevated in homozygous carriers of the SULT1A1*1 allele but not in carriers of the SULT1A1*2 allele (odds ratio 1.28, 95% confidence interval 0.50–3.31).
We found no evidence that the SULT1A1 genotype in itself modifies breast cancer risk associated with smoking in women up to age 50 years. In combination with NAT2 fast acetylator status, however, the SULT1A1*1/*1 genotype might increase breast cancer risk in women exposed to tobacco smoke.
PMCID: PMC1064130  PMID: 15743503
breast cancer; polymorphism; smoking; sulfotransferase

Results 1-21 (21)