PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (156)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
1.  Characterizing the cancer genome in lung adenocarcinoma 
Nature  2007;450(7171):893-898.
Somatic alterations in cellular DNA underlie almost all human cancers1. The prospect of targeted therapies2 and the development of high-resolution, genome-wide approaches3–8 are now spurring systematic efforts to characterize cancer genomes. Here we report a large-scale project to characterize copy-number alterations in primary lung adenocarcinomas. By analysis of a large collection of tumors (n = 371) using dense single nucleotide polymorphism arrays, we identify a total of 57 significantly recurrent events. We find that 26 of 39 autosomal chromosome arms show consistent large-scale copy-number gain or loss, of which only a handful have been linked to a specific gene. We also identify 31 recurrent focal events, including 24 amplifications and 7 homozygous deletions. Only six of these focal events are currently associated with known mutations in lung carcinomas. The most common event, amplification of chromosome 14q13.3, is found in ~12% of samples. On the basis of genomic and functional analyses, we identify NKX2-1 (NK2 homeobox 1, also called TITF1), which lies in the minimal 14q13.3 amplification interval and encodes a lineage-specific transcription factor, as a novel candidate proto-oncogene involved in a significant fraction of lung adenocarcinomas. More generally, our results indicate that many of the genes that are involved in lung adenocarcinoma remain to be discovered.
doi:10.1038/nature06358
PMCID: PMC2538683  PMID: 17982442
2.  Multi-institutional oncogenic driver mutation analysis in lung adenocarcinoma: The Lung Cancer Mutation Consortium experience 
Introduction
Molecular genetic analyses of lung adenocarcinoma have recently become standard of care for treatment selection. The Lung Cancer Mutation Consortium was formed to enable collaborative multi-institutional analyses of 10 potential oncogenic driver mutations. Technical aspects of testing, and clinicopathologic correlations are presented.
Methods
Mutation testing in at least one of 8 genes (EGFR, KRAS, ERBB2, AKT1, BRAF, MEK1, NRAS, PIK3CA) using SNaPshot, mass spectrometry, Sanger sequencing +/− PNA and/or sizing assays, along with ALK and/or MET FISH were performed in 6 labs on 1007 patients from 14 institutions.
Results
1007 specimens had mutation analysis performed, and 733 specimens had all 10 genes analyzed. Mutation identification rates did not vary by analytic method. Biopsy and cytology specimens were inadequate for testing in 26% and 35% of cases compared to 5% of surgical specimens. Among the 1007 cases with mutation analysis performed, EGFR, KRAS, ALK, and ERBB2 alterations were detected in 22, 25, 8.5, and 2.4% of cases, respectively. EGFR mutations were highly associated with female sex, Asian race, and never smoking status; and less strongly associated with stage IV disease, presence of bone metastases, and absence of adrenal metastases. ALK rearrangements were strongly associated with never smoking status, and more weakly associated with presence of liver metastases. ERBB2 mutations were strongly associated with Asian race and never smoking status. Two mutations were seen in 2.7% of samples, all but one of which involved one or more of PIK3CA, ALK or MET.
Conclusion
Multi-institutional molecular analysis across multiple platforms, sample types, and institutions can yield consistent results and novel clinicopathological observations.
doi:10.1097/JTO.0000000000000516
PMCID: PMC4410843  PMID: 25738220
lung adenocarcinoma; mutation; FISH; genotyping; LCMC
3.  Systematic siRNA Screen Unmasks NSCLC Growth Dependence by Palmitoyltransferase DHHC5 
Molecular cancer research : MCR  2015;13(4):784-794.
Protein S-palmitoylation is a widespread and dynamic post-translational modification that regulates protein-membrane interactions, protein-protein interactions, and protein stability. A large family of palmitoyl acyl transferases, termed the DHHC family due to the presence of a common catalytic motif, catalyzes S-palmitoylation; the role of these enzymes in cancer is largely unexplored. In this study, an RNAi-based screen targeting all 23 members of the DHHC family was conducted to examine the effects on the growth in non-small cell cancer (NSCLC). Interestingly, siRNAs directed against DHHC5 broadly inhibited the growth of multiple NSCLC lines but not normal human bronchial epithelial cell (HBEC) lines. Silencing of DHHC5 by lentivirus-mediated expression of DHHC5 shRNAs dramatically reduced in vitro cell proliferation, colony formation and cell invasion in a subset of cell lines that were examined in further detail. The phenotypes were restored by transfection of a wild-type DHHC5 plasmid but not by a plasmid expressing a catalytically inactive DHHC5. Tumor xenograft formation was severely inhibited by DHHC5 knockdown and rescued by DHHC5 expression, using both a conventional and tetracycline-inducible shRNA. These data indicate that DHHC5 has oncogenic capacity and contributes to tumor formation in NSCLC; thus representing a potential novel therapeutic target.
doi:10.1158/1541-7786.MCR-14-0608
PMCID: PMC4398612  PMID: 25573953
lung cancer; post-translational lipid modifications; S-palmitoylation; xenografts; drug target
4.  MiRNA-Related Genetic Variations Associated with Radiotherapy-Induced Toxicities in Patients with Locally Advanced Non–Small Cell Lung Cancer 
PLoS ONE  2016;11(3):e0150467.
Severe radiation-induced toxicities limit treatment efficacy and compromise outcomes of lung cancer. We aimed to identify microRNA-related genetic variations as biomarkers for the prediction of radiotherapy-induced acute toxicities. We genotyped 233 SNPs (161 in microRNA binding site and 72 in processing gene) and analyzed their associations with pneumonitis and esophagitis in 167 stage III NSCLC patients received definitive radiation therapy. Sixteen and 11 SNPs were associated with esophagitis and pneumonitis, respectively. After multiple comparison correction, RPS6KB2:rs10274, SMO:rs1061280, SMO:rs1061285 remained significantly associated with esophagitis, while processing gene DGCR8:rs720014, DGCR8:rs3757, DGCR8:rs1633445 remained significantly associated with pneumonitis. Patients with the AA genotype of RPS6KB2:rs10274 had an 81% reduced risk of developing esophagitis (OR: 0.19, 95% CI: 0.07–0.51, p = 0.001, q = 0.06). Patients with the AG+GG genotype of SMO:rs1061280 had an 81% reduced risk of developing esophagitis (OR: 0.19, 95% CI: 0.07–0.53, p = 0.001, q = 0.06). Patients with the GG+GA genotype of DGCR8:rs720014 had a 3.54-fold increased risk of pneumonitis (OR: 3.54, 95% CI: 1.65–7.61, p <0.05, q <0.1). Significantly cumulative effects of the top SNPs were observed for both toxicities (P-trend <0.001). Using bioinformatics tools, we found that the genotype of rs10274 was associated with altered expression of the RPS6KB2 gene. Gene-based analysis showed DGCR8 (p = 0.010) and GEMIN4 (p = 0.039) were the top genes associated with the risk of developing pneumonitis. Our results provide strong evidence that microRNA-related genetic variations contribute to the development of radiotherapy-induced acute esophagitis and pneumonitis and could thus serve as biomarkers to help accurately predict radiotherapy-induced toxicity in NSCLC patients.
doi:10.1371/journal.pone.0150467
PMCID: PMC4798772  PMID: 26991123
5.  Identification of Gene Expression Differences between Lymphangiogenic and Non-Lymphangiogenic Non-Small Cell Lung Cancer Cell Lines 
PLoS ONE  2016;11(3):e0150963.
It is well established that lung tumors induce the formation of lymphatic vessels. However, the molecular mechanisms controlling tumor lymphangiogenesis in lung cancer have not been fully delineated. In the present study, we identify a panel of non-small cell lung cancer (NSCLC) cell lines that induce lymphangiogenesis and use genome-wide mRNA expression to characterize the molecular mechanisms regulating tumor lymphangiogenesis. We show that Calu-1, H1993, HCC461, HCC827, and H2122 NSCLC cell lines form tumors that induce lymphangiogenesis whereas Calu-3, H1155, H1975, and H2073 NSCLC cell lines form tumors that do not induce lymphangiogenesis. By analyzing genome-wide mRNA expression data, we identify a 17-gene expression signature that distinguishes lymphangiogenic from non-lymphangiogenic NSCLC cell lines. Importantly, VEGF-C is the only lymphatic growth factor in this expression signature and is approximately 50-fold higher in the lymphangiogenic group than in the non-lymphangiogenic group. We show that forced expression of VEGF-C by H1975 cells induces lymphangiogenesis and that knockdown of VEGF-C in H1993 cells inhibits lymphangiogenesis. Additionally, we demonstrate that the triple angiokinase inhibitor, nintedanib (small molecule that blocks all FGFRs, PDGFRs, and VEGFRs), suppresses tumor lymphangiogenesis in H1993 tumors. Together, these data suggest that VEGF-C is the dominant driver of tumor lymphangiogenesis in NSCLC and reveal a specific therapy that could potentially block tumor lymphangiogenesis in NSCLC patients.
doi:10.1371/journal.pone.0150963
PMCID: PMC4780812  PMID: 26950548
6.  Genetic mutation of p53 and suppression of the miR-17~92 cluster are synthetic lethal in non-small cell lung cancer due to upregulation of vitamin D signaling 
Cancer research  2014;75(4):666-675.
Lung cancer is the leading cause of cancer-related fatalities. Recent success developing genotypically-targeted therapies, with potency only in well-defined subpopulations of tumors, suggests a path to improving patient survival. We utilized a library of oligonucleotide inhibitors to microRNAs, a class of post-transcriptional gene regulators, to identify novel synthetic lethal interactions between miRNA inhibition and molecular mechanisms in NSCLC. Two inhibitors, those for miR-92a and miR-1226*, produced a toxicity distribution across a panel of 27 cell lines that correlated with loss of p53 protein expression. Notably, depletion of p53 was sufficient to confer sensitivity to otherwise resistant telomerase-immortalized bronchial epithelial cells. We found that both miR inhibitors cause sequence-specific down-regulation of the miR-17~92 polycistron, and this down-regulation was toxic only in the context of p53 loss. Mechanistic studies indicated the selective toxicity of miR-17~92 polycistron inactivation was the consequence of derepression of vitamin D signaling via suppression of CYP24A1; a rate limiting enzyme in the 1α,25-dihydroxyvitamin D3 metabolic pathway. Of note, high CYP24A1 expression significantly correlated with poor patient outcome in multiple lung cancer cohorts. Our results indicate that the screening approach utilized in this study can identify clinically relevant synthetic lethal interactions, and that vitamin D receptor agonists may show enhanced efficacy in p53-negative lung cancer patients.
doi:10.1158/0008-5472.CAN-14-1329
PMCID: PMC4333022  PMID: 25519225
7.  Clinicopathologic features and outcomes of patients with lung adenocarcinomas harboring BRAF mutations in the Lung Cancer Mutation Consortium 
Cancer  2014;121(3):448-456.
(1) PURPOSE
The advent of effective targeted therapy in BRAFV600E mutant lung adenocarcinomas necessitates further exploration of the unique clinical features and behavior of advanced stage BRAF mutant lung adenocarcinomas.
(2) PATIENTS AND METHODS
We reviewed data from patients with advanced lung adenocarcinomas enrolled in the Lung Cancer Mutation Consortium whose tumors underwent testing for mutations in EGFR, KRAS, HER2, AKT1, BRAF, MEK1, NRAS, PIK3CA, ALK translocations, and MET amplification.
(3) RESULTS
Twenty-one BRAF mutations were identified in 951 patients with adenocarcinomas (2.2%: 95% CI 1.4 to 3.4%); 17 (81%: 95% CI 60 to 92%) were BRAFV600E and 4 were non-BRAFV600E mutations. Among the 733 cases tested for all 10 genes, BRAF mutations were more likely to occur in current or former smokers than most other genotypic abnormalities (BRAF versus sensitizing EGFR: 82% versus 36%, mid-P<0.001; versus ALK: 39%, mid-P=0.003; versus other mutations: 49%, mid-P=0.02; versus patients with more than one oncogenic driver (doubleton): 46%, mid-P=0.04.) The double mutation rate among patients with BRAF mutations was 16%, compared with 5% in patients with other genomic abnormalities (mid-P=0.045). Differences were not found in survival between patients with BRAF mutations and those with other genomic abnormalities (P>0.20).
(4) CONCLUSIONS
We demonstrate BRAF mutations occur in 2.2% of advanced stage lung adenocarcinomas, were most commonly V600E, were associated with distinct clinicopathologic features compared with other genomic subtypes and a high mutation rate in more than one gene, underscoring the importance of comprehensive genomic profiling in assessing patients with advanced lung adenocarcinomas.
doi:10.1002/cncr.29042
PMCID: PMC4305000  PMID: 25273224
BRAF; lung adenocarcinomas; genomic profiling; Lung Cancer Mutation Consortium; clinicopathologic features
8.  Loss of miR-125a expression in a model of K-ras-dependent pulmonary premalignancy 
Understanding the molecular pathogenesis of lung cancer is necessary to identify biomarkers/targets specific to individual airway molecular profiles and to identify options for targeted chemoprevention. Herein, we identify mechanisms by which loss of microRNA (miRNA)-125a-3p (miR-125a) contributes to the malignant potential of human bronchial epithelial cells (HBECs) harboring an activating point mutation of the K-ras proto-oncogene (HBEC K-ras). Among other miRNAs, we identified significant miR-125a loss in HBEC K-ras lines and determined that miR-125a is regulated by the PEA3 transcription factor. PEA3 is upregulated in HBEC K-ras cells, and genetic knockdown of PEA3 restores miR-125a expression. From a panel of inflammatory/angiogenic factors, we identified increased CXCL1 and vascular endothelial growth factor (VEGF) production by HBEC K-ras cells and determined that miR-125a overexpression significantly reduces K-ras-mediated production of these tumorigenic factors. miR-125a overexpression also abrogates increased proliferation of HBEC K-ras cells and suppresses anchorage-independent growth (AIG) of HBEC K-ras/P53 cells, the latter of which is CXCL1-dependent. Finally, pioglitazone increases levels of miR-125a in HBEC K-ras cells via PEA3 downregulation. In addition, pioglitazone and miR-125a overexpression elicit similar phenotypic responses, including suppression of both proliferation and VEGF production. Our findings implicate miR-125a loss in lung carcinogenesis and lay the groundwork for future studies to determine if miR-125a is a possible biomarker for lung carcinogenesis and/or a chemoprevention target. Moreover, our studies illustrate that pharmacologic augmentation of miR-125a in K-ras-mutated pulmonary epithelium effectively abrogates several deleterious downstream events associated with the mutation.
doi:10.1158/1940-6207.CAPR-14-0063
PMCID: PMC4125465  PMID: 24913817
miR-125a; pulmonary premalignancy; molecular markers; PEA3
9.  Essential role of aldehyde dehydrogenase 1A3 (ALDH1A3) for the maintenance of non-small cell lung cancer stem cells is associated with the STAT3 pathway 
Purpose
Lung cancer stem cells (CSCs) with elevated aldehyde dehydrogenase (ALDH) activity are self-renewing, clonogenic and tumorigenic. The purpose of our study is to elucidate the mechanisms by which lung CSCs are regulated.
Experimental Design
A genome-wide gene expression analysis was performed to identify genes differentially expressed in the ALDH+ vs. ALDH− cells. RT-PCR, western blot and Aldefluor assay were used to validate identified genes. To explore the function in CSCs we manipulated their expression followed by colony and tumor formation assays.
Results
We identified a subset of genes that were differentially expressed in common in ALDH+ cells, among which ALDH1A3 was the most upregulated gene in ALDH+ vs. ALDH− cells. ShRNA-mediated knockdown of ALDH1A3 in NSCLCs resulted in a dramatic reduction in ALDH activity, clonogenicity and tumorigenicity, indicating that ALDH1A3 is required for tumorigenic properties. By contrast, overexpression of ALDH1A3 by itself it was not sufficient to increase tumorigenicity. The ALDH+ cells also expressed more activated Signal Transducers and Activators of Transcription 3 (STAT3) than ALDH− cells. Inhibition of STAT3 or its activator EZH2 genetically or pharmacologically diminished the level of ALDH+ cells and clonogenicity. Unexpectedly, ALDH1A3 was highly expressed in female, never smokers, well differentiated tumors, or adenocarcinoma. ALDH1A3 low expression was associated with poor overall survival.
Conclusion
Our data show that ALDH1A3 is the predominant ALDH isozyme responsible for ALDH activity and tumorigenicity in most NSCLCs, and that inhibiting either ALDH1A3 or the STAT3 pathway are potential therapeutic strategies to eliminate the ALDH+ subpopulation in NSCLCs.
doi:10.1158/1078-0432.CCR-13-3292
PMCID: PMC4438754  PMID: 24907115
Lung cancer; cancer stem cells; ALDH1A3; STAT3; Stattic
11.  Aberrant large tumor suppressor 2 (LATS2) gene expression correlates with EGFR mutation and survival in lung adenocarcinomas 
Background
Large tumor suppressor 2 (LATS2) gene is a putative tumor suppressor gene with potential roles in regulation of cell proliferation and apoptosis in lung cancer. The aim of this study is to explore the association of aberrant LATS2 expression with EGFR mutation and survival in lung adenocarcinoma (AD), and the effects of LATS2 silencing in both lung AD cell lines.
Methods
LATS2 mRNA and protein expression in resected lung AD were correlated with demographic characteristics, EGFR mutation and survival. LATS2-specific siRNA was transfected into four EGFR wild-type (WT) and three EGFR mutant AD cell lines and the changes in LATS2 expression and relevant signaling molecules before and after LATS2 knockdown were assayed.
Results
Fifty resected lung AD were included (M:F = 23:27, smokers:non-smokers = 19:31, EGFR mutant:wild-type = 21:29) with LATS2 mRNA levels showed no significant difference between gender, age, smoking and pathological stages while LATS2 immunohistochemical staining on an independent set of 79 lung AD showed similar trend. LATS2 mRNA level was found to be a significant independent predictor for survival status (disease-free survival RR = 0.217; p = 0.003; Overall survival RR = 0.238; p = 0.036). siRNA-mediated suppression of LATS2 expression resulted in augmentation of ERK phosphorylation in EGFR wild-type AD cell lines with high basal LATS2 expression, discriminatory modulation of Akt signaling between EGFR wild-type and mutant cells, and induction of p53 accumulation in AD cell lines with low baseline p53 levels.
Conclusions
LATS2 expression level is predictive of survival in patients with resected lung AD. LATS2 may modulate and contribute to tumor growth via different signaling pathways in EGFR mutant and wild-type tumors.
doi:10.1016/j.lungcan.2014.05.025
PMCID: PMC4451109  PMID: 24976335
Lung cancer; Large tumor suppressor 2 gene; Gene expression; Gene silencing; EGFR signaling
12.  Inflammation-related genetic variants predict toxicities following definitive-radiotherapy for lung cancer 
Definitive radiotherapy improves locoregional control and survival in inoperable non-small cell lung cancer (NSCLC) patients. However, radiation-induced toxicities (pneumonitis/esophagitis) are common dose-limiting inflammatory conditions. We therefore conducted a pathway-based analysis to identify inflammation-related SNPs associated with radiation-induced pneumonitis or esophagitis. 11,930 SNPs were genotyped in 201 stage I-III NSCLC patients treated with definitive radiotherapy. Validation was performed in an additional 220 NSCLC cases. After validation, 19 SNPs remained significant. A polygenic risk score (PRS) was generated to summarize the effect from validated SNPs. Significant improvements in discriminative ability were observed by adding the PRS into the clinical/epidemiological variable-based model. We then used 277 lymphoblastoid cell-lines to assess radiation sensitivity and eQTL relationships of the identified SNPs. Three genes (PRKCE,DDX58 and TNFSF7) were associated with radiation sensitivity. We concluded that inflammation-related genetic variants could contribute to the development of radiation-induced toxicities. These loci could assist in predicting those unfavorable events.
doi:10.1038/clpt.2014.154
PMCID: PMC4206576  PMID: 25054431
NSCLC; inflammation; radiation; pneumonitis; esophagitis; single nucleotide polymorphism
13.  Epigenetic Inactivation of RASSF1A in Lung and Breast Cancers and Malignant Phenotype Suppression 
Background
The recently identified RASSF1 locus is located within a 120-kilobase region of chromosome 3p21.3 that frequently undergoes allele loss in lung and breast cancers. We explored the hypothesis that RASSF1 encodes a tumor suppressor gene for lung and breast cancers.
Methods
We assessed expression of two RASSF1 gene products, RASSF1A and RASSF1C, and the methylation status of their respective promoters in 27 non-small-cell lung cancer (NSCLC) cell lines, in 107 resected NSCLCs, in 47 small-cell lung cancer (SCLC) cell lines, in 22 breast cancer cell lines, in 39 resected breast cancers, in 104 nonmalignant lung samples, and in three breast and lung epithelial cultures. We also transfected a lung cancer cell line that lacks RASSF1A expression with vectors containing RASSF1A complementary DNA to determine whether exogenous expression of RASSF1A would affect in vitro growth and in vivo tumorigenicity of this cell line. All statistical tests were two-sided.
Results
RASSF1A messenger RNA was expressed in nonmalignant epithelial cultures but not in 100% of the SCLC, in 65% of the NSCLC, or in 60% of the breast cancer lines. By contrast, RASSF1C was expressed in all nonmalignant cell cultures and in nearly all cancer cell lines. RASSF1A promoter hypermethylation was detected in 100% of SCLC, in 63% of NSCLC, in 64% of breast cancer lines, in 30% of primary NSCLCs, and in 49% of primary breast tumors but in none of the nonmalignant lung tissues. RASSF1A promoter hypermethylation in resected NSCLCs was associated with impaired patient survival (P = .046). Exogenous expression of RASSF1A in a cell line lacking expression decreased in vitro colony formation and in vivo tumorigenicity.
Conclusion
RASSF1A is a potential tumor suppressor gene that undergoes epigenetic inactivation in lung and breast cancers through hypermethylation of its promoter region.
PMCID: PMC4374741  PMID: 11333291
14.  Inflammation-related Genetic Variations and Survival for Advanced Non-Small Cell Lung Cancer Receiving First-line Chemotherapy 
Background
accurate prognostic prediction is challenging for advanced-stage non-small cell lung cancer (NSCLC) patients.
Methods
we systematically investigated genetic variants within inflammation pathway as potential prognostic markers for advanced-stage NSCLC patients treated with first-line chemotherapy. A discovery phase in 502 patients and an internal validation in 335 patients were completed at MD Anderson Cancer Center. External validation was performed in 371 patients at Harvard University.
Results
a missense SNP (HLA-DOB:rs2071554) predicted to influence protein function was significantly associated with poor survival in the discovery (HR:1.46, 95% CI:1.02-2.09), internal validation (HR:1.51, 95% CI:1.02-2.25), and external validation (HR:1.52, 95% CI:1.01-2.29) populations. KLRK1:rs2900420 was associated with a reduced risk in the discovery (HR:0.76, 95% CI:0.60-0.96), internal validation (HR:0.77, 95% CI:0.61-0.99), and external validation (HR:0.80, 95% CI:0.63-1.02) populations. A strong cumulative effect was observed for these SNPs on overall survival.
Conclusions
Genetic variations in inflammation-related genes could have potential to complement prediction of prognosis.
doi:10.1038/clpt.2014.89
PMCID: PMC4141040  PMID: 24755914
NSCLC; advanced stage; overall survival; inflammation; single nucleotide polymorphism
15.  Nuclear Receptor Expression and Function in Human Lung Cancer Pathogenesis 
PLoS ONE  2015;10(8):e0134842.
Lung cancer is caused by combinations of diverse genetic mutations. Here, to understand the relevance of nuclear receptors (NRs) in the oncogene-associated lung cancer pathogenesis, we investigated the expression profile of the entire 48 NR members by using QPCR analysis in a panel of human bronchial epithelial cells (HBECs) that included precancerous and tumorigenic HBECs harboring oncogenic K-rasV12 and/or p53 alterations. The analysis of the profile revealed that oncogenic alterations accompanied transcriptional changes in the expression of 19 NRs in precancerous HBECs and 15 NRs according to the malignant progression of HBECs. Amongst these, peroxisome proliferator-activated receptor gamma (PPARγ), a NR chosen as a proof-of-principle study, showed increased expression in precancerous HBECs, which was surprisingly reversed when these HBECs acquired full in vivo tumorigenicity. Notably, PPARγ activation by thiazolidinedione (TZD) treatment reversed the increased expression of pro-inflammatory cyclooxygenase 2 (COX2) in precancerous HBECs. In fully tumorigenic HBECs with inducible expression of PPARγ, TZD treatments inhibited tumor cell growth, clonogenecity, and cell migration in a PPARγ-sumoylation dependent manner. Mechanistically, the sumoylation of liganded-PPARγ decreased COX2 expression and increased 15-hydroxyprostaglandin dehydrogenase expression. This suggests that ligand-mediated sumoylation of PPARγ plays an important role in lung cancer pathogenesis by modulating prostaglandin metabolism.
doi:10.1371/journal.pone.0134842
PMCID: PMC4526668  PMID: 26244663
16.  A novel molecular pathway for Snail-dependent, SPARC-mediated invasion in non-small cell lung cancer pathogenesis 
Definition of the molecular pathogenesis of lung cancer allows investigators an enhanced understanding of the natural history of the disease, thus fostering development of new prevention strategies. In addition to regulating epithelial-to-mesenchymal transition (EMT), the transcription factor Snail exerts global effects on gene expression. Our recent studies reveal that Snail is upregulated in non-small cell lung cancer (NSCLC), is associated with poor prognosis, and promotes tumor progression in vivo. Herein, we demonstrate that overexpression of Snail leads to upregulation of Secreted Protein, Acidic and Rich in Cysteine (SPARC) in models of premalignancy and established disease, as well as in lung carcinoma tissues in situ. Snail overexpression leads to increased SPARC-dependent invasion in vitro, indicating that SPARC may play a role in lung cancer progression. Bioinformatic analysis implicates TGF-β, ERK1/2, and miR-29b as potential intermediaries in Snail-mediated upregulation of SPARC. Both the TGF-β1 ligand and TGF-βR2 are upregulated following Snail overexpression. Treatment of human bronchial epithelial cell (HBEC) lines with TGF-β1 and inhibition of TGF-β1 mRNA expression modulated SPARC expression. Inhibition of MEK phosphorylation downregulated SPARC. MiR-29b is downregulated in Snail overexpressing cell lines, while overexpression of miR-29b inhibited SPARC expression. In addition, miR-29b was upregulated following ERK inhibition, suggesting a Snail-dependent pathway by which Snail activation of TGF-β and ERK signaling results in downregulation of miR-29b and subsequent upregulation of SPARC. Our discovery of pathways responsible for Snail-induced SPARC expression contributes to the definition of NSCLC pathogenesis.
doi:10.1158/1940-6207.CAPR-13-0263
PMCID: PMC3919444  PMID: 24253315
NSCLC; Snail; SPARC; invasion; parallel progression
17.  TIMELESS is overexpressed in lung cancer and its expression correlates with poor patient survival 
Cancer science  2013;104(2):171-177.
TIMELESS (TIM) is a mammalian homolog of a Drosophila circadian rhythm gene, but its circadian properties in mammals have yet to be determined. TIM appears to be essential for replication protection and genomic stability. Recently, the involvement of TIM in human malignancies has been reported; therefore, we investigated the role of TIM in lung cancer. Microarray expression analysis of lung cancer cell lines showed that TIM expression was elevated 3.7-fold (P < 0.001) in non-small cell lung cancer cell lines (n = 116) compared to normal lung controls (n = 59). In addition, small cell lung cancer cell lines (n = 29) expressed TIM at levels 2.2-fold (P < 0.001) higher than non-small cell lung cancer. Western blot analysis of 22 lung cancer cell lines revealed that all of them expressed TIM protein and that 20 cell lines (91%) expressed TIM protein at higher levels than a normal control line. Remarkably, immunohistochemistry of 30 surgically resected lung cancer specimens showed that all lung cancer specimens but no matched normal lung tissues were positive for TIM expression. Moreover, immunohistochemistry of surgically resected specimens from 88 consecutive patients showed that high TIM protein levels correlated with poor overall survival (P = 0.013). Mutation analysis for TIM in 23 lung cancer cell lines revealed no mutation. TIM knockdown suppressed proliferation and clonogenic growth, and induced apoptosis in H157 and H460 cells. Taken together, our findings suggest that TIM could be useful as a diagnostic and prognostic marker for lung cancer and targeting it would be of high therapeutic value for this disease.
doi:10.1111/cas.12068
PMCID: PMC4454395  PMID: 23173913
18.  Analysis of TP53 Mutation Status in Human Cancer Cell Lines: A Reassessment 
Human mutation  2014;35(6):756-765.
Tumor-derived cell lines play an important role in the investigation of tumor biology and genetics. Across a wide array of studies, they have been tools of choice for the discovery of important genes involved in cancer and for the analysis of the cellular pathways that are impaired by diverse oncogenic events. They are also invaluable for screening novel anticancer drugs. The TP53 protein is a major component of multiple pathways that regulate cellular response to various types of stress. Therefore, TP53 status affects the phenotype of tumor cell lines profoundly and must be carefully ascertained for any experimental project. In the present review, we use the 2014 release of the UMD TP53 database to show that TP53 status is still controversial for numerous cell lines, including some widely used lines from the NCI-60 panel. Our analysis clearly confirms that, despite numerous warnings, the misidentification of cell lines is still present as a silent and neglected issue, and that extreme care must be taken when determining the status of p53, because errors may lead to disastrous experimental interpretations. A novel compendium gathering the TP53 status of 2,500 cell lines has been made available (http://p53.fr). A stand-alone application can be used to browse the database and extract pertinent information on cell lines and associated TP53 mutations. It will be updated regularly to minimize any scientific issues associated with the use of misidentified cell lines (http://p53.fr).
doi:10.1002/humu.22556
PMCID: PMC4451114  PMID: 24700732
TP53; cancer cell line; cross-contamination; misidentification; recommendation
19.  Targeting ADAM-mediated ligand cleavage to inhibit HER3 and EGFR pathways in non-small cell lung cancer 
Cancer cell  2006;10(1):39-50.
Summary
We describe here the existence of a heregulin-HER3 autocrine loop, and the contribution of heregulin-dependent, HER2-mediated HER3 activation to gefitinib insensitivity in non-small cell lung cancer (NSCLC). ADAM17 protein, a major ErbB ligand sheddase, is upregulated in NSCLC and is required not only for heregulin-dependent HER3 signaling, but also for EGFR ligand-dependent signaling in NSCLC cell lines. A selective ADAM inhibitor, INCB3619, prevents the processing and activation of multiple ErbB ligands, including heregulin. In addition, INCB3619 inhibits gefitinib-resistant HER3 signaling and enhances gefitinib inhibition of EGFR signaling in NSCLC. These results show that ADAM inhibition affects multiple ErbB pathways in NSCLC and thus offers an excellent opportunity for pharmacological intervention, either alone or in combination with other drugs.
doi:10.1016/j.ccr.2006.05.024
PMCID: PMC4451119  PMID: 16843264
20.  On comparing heterogeneity across biomarkers 
Microscopy reveals complex patterns of cellular heterogeneity that can be biologically informative. However, a limitation of microscopy is that only a small number of biomarkers can typically be monitored simultaneously. Thus, a natural question is whether additional biomarkers provide a deeper characterization of the distribution of cellular states in a population. How much information about a cell’s phenotypic state in one biomarker is gained by knowing its state in another biomarker?
Here, we describe a framework for comparing phenotypic states across biomarkers. Our approach overcomes the current limitation of microscopy by not requiring co-staining biomarkers on the same cells; instead we require staining of biomarkers (possibly separately) on a common collection of phenotypically diverse cell lines.
We evaluate our approach on two image datasets: 33 oncogenically diverse lung cancer cell lines stained with 7 biomarkers, and 49 less diverse subclones of one lung cancer cell line stained with 12 biomarkers. We first validate our method by comparing it to the “gold standard” of co-staining. We then apply our approach to all pairs of biomarkers and use it to identify biomarkers that yield similar patterns of heterogeneity. The results presented in this work suggest that many biomarkers provide redundant information about heterogeneity. Thus, our approach provides a practical guide for selecting independently informative biomarkers and, more generally, will yield insights into both the connectivity of biological networks and the complexity of the state space of biological systems.
doi:10.1002/cyto.a.22599
PMCID: PMC4442742  PMID: 25425168
Heterogeneity; Biomarker Selection; Systems Biology; Microscopy; Bioimage Informatics; Biological Networks; Single-Cell Variability; Information Theory
21.  Ras regulates kinesin 13 family members to control cell migration pathways in transformed human bronchial epithelial cells 
Oncogene  2013;33(47):5457-5466.
We show that expression of the microtubule depolymerizing kinesin KIF2C is induced by transformation of immortalized human bronchial epithelial cells by expression of K-RasG12V and knockdown of p53. Further investigation demonstrates that this is due to the K-Ras/ERK1/2 MAPK pathway, as loss of p53 had little effect on KIF2C expression. In addition to KIF2C, we also found that the related kinesin KIF2A is modestly upregulated in this model system; both proteins are expressed more highly in many lung cancer cell lines compared to normal tissue. As a consequence of their depolymerizing activity, these kinesins increase dynamic instability of microtubules. Depletion of either of these kinesins impairs the ability of cells transformed with mutant K-Ras to migrate and invade matrigel. However, depletion of these kinesins does not reverse the epithelial-mesenchymal transition caused by mutant K-Ras. Our studies indicate that increased expression of microtubule destabilizing factors can occur during oncogenesis to support enhanced migration and invasion of tumor cells.
doi:10.1038/onc.2013.486
PMCID: PMC4025984  PMID: 24240690
22.  Differential expression of cell cycle regulators in CDK5-dependent medullary thyroid carcinoma tumorigenesis 
Oncotarget  2015;6(14):12080-12093.
Medullary thyroid carcinoma (MTC) is a neuroendocrine cancer of thyroid C-cells, for which few treatment options are available. We have recently reported a role for cyclin-dependent kinase 5 (CDK5) in MTC pathogenesis. We have generated a mouse model, in which MTC proliferation is induced upon conditional overexpression of the CDK5 activator, p25, in C-cells, and arrested by interrupting p25 overexpression. Here, we identify genes and proteins that are differentially expressed in proliferating versus arrested benign mouse MTC. We find that downstream target genes of the tumor suppressor, retinoblastoma protein, including genes encoding cell cycle regulators such as CDKs, cyclins and CDK inhibitors, are significantly upregulated in malignant mouse tumors in a CDK5-dependent manner. Reducing CDK5 activity in human MTC cells down-regulated these cell cycle regulators suggesting that CDK5 activity is critical for cell cycle progression and MTC proliferation. Finally, the same set of cell cycle proteins was consistently overexpressed in human sporadic MTC but not in hereditary MTC. Together these findings suggest that aberrant CDK5 activity precedes cell cycle initiation and thus may function as a tumor-promoting factor facilitating cell cycle protein expression in MTC. Targeting aberrant CDK5 or its downstream effectors may be a strategy to halt MTC tumorigenesis.
PMCID: PMC4494924  PMID: 25900242
Cdk5; retinoblastoma protein; neuroendocrine; medullary thyroid carcinoma; cell cycle
23.  Branching Morphogenesis of Immortalized Human Bronchial Epithelial Cells in Three-Dimensional Culture 
While mouse models have contributed in our understanding of lung development, repair and regeneration, inherent differences between the murine and human airways requires the development of new models using human airway epithelial cells. In this study, we describe a three-dimensional model system using human bronchial epithelial cells (HBECs) cultured on reconstituted basement membrane. HBECs form complex budding and branching structures on reconstituted basement membrane when co-cultured with human lung fetal fibroblasts. These structures are reminiscent of the branching epithelia during lung development. The HBECs also retain markers indicative of epithelial cell types from both the central and distal airways suggesting their multipotent potential. In addition, we illustrate how the model can be utilized to understand respiratory diseases such as lung cancer. The 3D novel cell culture system recapitulates stromal-epithelial interactions in vitro that can be utilized to understand important aspects of lung development and diseases.
doi:10.1016/j.diff.2014.02.003
PMCID: PMC4112006  PMID: 24830354
Fibroblasts; Distal airways; Bronchial epithelial cells; Branching; Differentiation
24.  Aiolos Promotes Anchorage Independence by Silencing p66Shc Transcription in Cancer Cells 
Cancer cell  2014;25(5):575-589.
SUMMARY
Anchorage of tissue cells to their physical environment is an obligate requirement for survival which is lost in mature hematopoietic and in transformed epithelial cells. Here we find that a lymphocyte lineage-restricted transcription factor, Aiolos, is frequently expressed in lung cancers and predicts markedly reduced patient survival. Aiolos decreases expression of a large set of adhesion-related genes, disrupting cell-cell and cell-matrix interactions. Aiolos also reconfigures chromatin structure within the SHC1 gene, causing isoform-specific silencing of the anchorage reporter p66Shc and blocking anoikis in vitro and in vivo. In lung cancer tissues and single cells, p66Shc expression inversely correlates with that of Aiolos. Together, these findings suggest that Aiolos functions as an epigenetic driver of lymphocyte mimicry in metastatic epithelial cancers.
doi:10.1016/j.ccr.2014.03.020
PMCID: PMC4070880  PMID: 24823637
25.  A search for novel cancer/testis antigens in lung cancer identifies VCX/Y genes expanding the repertoire of potential immunotherapeutic targets 
Cancer research  2014;74(17):4694-4705.
Cancer/testis (CT) antigens are potential immunotherapeutic targets in cancer. However, the expression of particular antigens is limited to a subset of tumors of a given type. Thus, there is a need to identify antigens with complementary expression patterns for effective therapeutic intervention. In this study, we searched for genes that were distinctly expressed at a higher level in lung tumor tissue and the testes compared to other non-tumor tissues and identified members of the VCX/Y gene family as novel CT antigens. VCX3A, a member of the VCX/Y gene family, was expressed at the protein level in approximately 20% of lung adenocarcinomas and 35% of squamous cell carcinomas, but not expressed in normal lung tissues. Among CT antigens with concordant mRNA and protein expression levels, four CT antigens, XAGE1, VCX, IL13RA2, and SYCE1, were expressed, alone or in combination, in about 80% of lung adenocarcinoma tumors. The CT antigen VCX/Y gene family broadens the spectrum of CT antigens expressed in lung adenocarcinomas for clinical applications.
doi:10.1158/0008-5472.CAN-13-3725
PMCID: PMC4398029  PMID: 24970476
Cancer/testis antigen; VCX/Y; lung cancer; immunotherapy

Results 1-25 (156)