Search tips
Search criteria

Results 1-25 (37)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
2.  Two BRM promoter insertion polymorphisms increase the risk of early-stage upper aerodigestive tract cancers 
Cancer Medicine  2014;3(2):426-433.
Brahma (BRM) has a key function in chromatin remodeling. Two germline BRM promoter insertion–deletion polymorphisms, BRM-741 and BRM-1321, have been previously associated with an increased risk of lung cancer in smokers and head and neck cancer. To further evaluate their role in cancer susceptibility particularly in early disease, we conducted a preplanned case–control study to investigate the association between the BRM promoter variants and stage I/II upper aerodigestive tract (UADT) cancers (i.e., lung, esophageal, head and neck), a group of early-stage malignancies in which molecular and genetic etiologic factors are poorly understood. The effects of various clinical factors on this association were also studied. We analyzed 562 cases of early-stage UADT cancers and 993 matched healthy controls. The double homozygous BRM promoter variants were associated with a significantly increased risk of early stage UADT cancers (adjusted odds ratio [aOR], 2.46; 95% confidence interval [CI], 1.7–3.8). This association was observed in lung (aOR, 2.61; 95% CI, 1.5–4.9) and head and neck (aOR, 2.75; 95% CI, 1.4–5.6) cancers, but not significantly in esophageal cancer (aOR, 1.66; 95% CI, 0.7–5.8). There was a nonsignificant trend for increased risk in the heterozygotes or single homozygotes. The relationship between the BRM polymorphisms and early-stage UADT cancers was independent of age, sex, smoking status, histology, and clinical stage. These findings suggest that the BRM promoter double insertion homozygotes may be associated with an increased risk of early-stage UADT cancers independent of smoking status and histology, which must be further validated in other populations.
PMCID: PMC3987092  PMID: 24519853
BRM; cancer risk; case–control study; esophageal cancer; genetic polymorphisms; head and neck cancer; lung cancer; upper aerodigestive tract cancers
3.  Probability of Cancer in Pulmonary Nodules Detected on First Screening CT 
The New England journal of medicine  2013;369(10):910-919.
Major issues in the implementation of screening for lung cancer by means of low-dose computed tomography (CT) are the definition of a positive result and the management of lung nodules detected on the scans. We conducted a population-based prospective study to determine factors predicting the probability that lung nodules detected on the first screening low-dose CT scans are malignant or will be found to be malignant on follow-up.
We analyzed data from two cohorts of participants undergoing low-dose CT screening. The development data set included participants in the Pan-Canadian Early Detection of Lung Cancer Study (PanCan). The validation data set included participants involved in chemoprevention trials at the British Columbia Cancer Agency (BCCA), sponsored by the U.S. National Cancer Institute. The final outcomes of all nodules of any size that were detected on baseline low-dose CT scans were tracked. Parsimonious and fuller multivariable logistic-regression models were prepared to estimate the probability of lung cancer.
In the PanCan data set, 1871 persons had 7008 nodules, of which 102 were malignant, and in the BCCA data set, 1090 persons had 5021 nodules, of which 42 were malignant. Among persons with nodules, the rates of cancer in the two data sets were 5.5% and 3.7%, respectively. Predictors of cancer in the model included older age, female sex, family history of lung cancer, emphysema, larger nodule size, location of the nodule in the upper lobe, part-solid nodule type, lower nodule count, and spiculation. Our final parsimonious and full models showed excellent discrimination and calibration, with areas under the receiver-operating-characteristic curve of more than 0.90, even for nodules that were 10 mm or smaller in the validation set.
Predictive tools based on patient and nodule characteristics can be used to accurately estimate the probability that lung nodules detected on baseline screening low-dose CT scans are malignant. (Funded by the Terry Fox Research Institute and others; number, NCT00751660.)
PMCID: PMC3951177  PMID: 24004118
4.  Single nucleotide polymorphisms in the matrix metalloproteinase gene family and the frequency and duration of gastroesophageal reflux disease influence the risk of esophageal adenocarcinoma 
The matrix metalloproteinase (MMP) family of proteins mediates various cellular pathways, including apoptosis and angiogenesis. Polymorphisms of MMP genes are associated with increased esophageal adenocarcinoma (EAC) risk. Gastroesophageal reflux disease (GERD) is an established EAC risk factor. We examined whether MMP polymorphism-EAC risk is modified by GERD. In total, 309 EAC patients and 279 frequency-matched healthy controls underwent MMP1 1G/2G, MMP3 6A/5A, MMP12 −82A/G and MMP12 1082A/G genotyping. Questionnaires collected GERD history. EAC risk was analyzed using logistic regression, adjusted for key covariates and stratified by GERD. Joint effects models explored GERD severity and duration, whereas additional models explored genotype–GERD interactions in EAC risk. We determined that each MMP1 and MMP3 minor (variant) allele was independently associated with increased EAC risk (adjusted odds ratio (AOR) 3.2, 95% confidence interval (CI) 2.0–5.1, p < 0.001 and AOR 1.8, 95% CI 1.1–2.7, p = 0.01, respectively) only among those with GERD but not in GERD-free individuals (all p = nonsignificant). There were significant interactions between the MMP1 variants and the presence of GERD (p = 0.002) and between MMP3 variants and GERD (p = 0.04). There was an equally strong interaction between cumulative GERD severity and MMP1 (p = 0.002). The AOR of each variant allele was 14.9 (95% CI 1.6–136) for individuals with severe GERD, 1.7 (95% CI 1.0–2.7) for mild-moderate GERD and 0.98 (95% CI 0.7–1.4) for those without GERD. This was further reflected in separate analyses of frequency and duration of GERD. In conclusion, MMP1 1G/2G (and possibly MMP3 6A/5A) polymorphisms alter EAC risk differentially for GERD and GERD-free individuals.
PMCID: PMC3908453  PMID: 22422400
matrix metalloproteinase; gene polymorphism; gastroesophageal reflux disease; esophageal cancer
5.  Resistance to Bleomycin in Cancer Cell Lines Is Characterized by Prolonged Doubling Time, Reduced DNA Damage and Evasion of G2/M Arrest and Apoptosis 
PLoS ONE  2013;8(12):e82363.
To establish, characterize and elucidate potential mechanisms of acquired bleomycin (BLM) resistance using human cancer cell lines. Seven BLM-resistant cell lines were established by exposure to escalating BLM concentrations over a period of 16-24 months. IC50 values and cell doubling times were quantified using a real time cytotoxicity assay. COMET and γ-H2AX assays, cell cycle analysis, and apoptosis assessment further investigated the mechanisms of BLM resistance in these cell lines.
Compared with parental cell lines, real time cytotoxicity assays revealed 7 to 49 fold increases in IC50 and a mean doubling time increase of 147 % (range 64 %-352%) in BLM-resistant sub-clones (p<0.05 for both). Higher maintenance BLM concentrations were associated with higher IC50 and increased doubling times (p<0.05). Significantly reduced DNA damage (COMET and γ-H2AX assays), G2/M arrest, and apoptosis (p<0.05 for each set of comparison) following high-dose acute BLM exposure was observed in resistant sub-clones, compared with their BLM-sensitive parental counterparts. Three weeks of BLM-free culturing resulted in a partial return to BLM sensitivity in 3/7 BLM-resistant sub-clones (p<0.05).
Bleomycin resistance may be associated with reduced DNA damage after bleomycin exposure, resulting in reduced G2/M arrest, and reduced apoptosis.
PMCID: PMC3857806  PMID: 24349265
6.  Previous Lung Diseases and Lung Cancer Risk: A Pooled Analysis From the International Lung Cancer Consortium 
American Journal of Epidemiology  2012;176(7):573-585.
To clarify the role of previous lung diseases (chronic bronchitis, emphysema, pneumonia, and tuberculosis) in the development of lung cancer, the authors conducted a pooled analysis of studies in the International Lung Cancer Consortium. Seventeen studies including 24,607 cases and 81,829 controls (noncases), mainly conducted in Europe and North America, were included (1984–2011). Using self-reported data on previous diagnoses of lung diseases, the authors derived study-specific effect estimates by means of logistic regression models or Cox proportional hazards models adjusted for age, sex, and cumulative tobacco smoking. Estimates were pooled using random-effects models. Analyses stratified by smoking status and histology were also conducted. A history of emphysema conferred a 2.44-fold increased risk of lung cancer (95% confidence interval (CI): 1.64, 3.62 (16 studies)). A history of chronic bronchitis conferred a relative risk of 1.47 (95% CI: 1.29, 1.68 (13 studies)). Tuberculosis (relative risk = 1.48, 95% CI: 1.17, 1.87 (16 studies)) and pneumonia (relative risk = 1.57, 95% CI: 1.22, 2.01 (12 studies)) were also associated with lung cancer risk. Among never smokers, elevated risks were observed for emphysema, pneumonia, and tuberculosis. These results suggest that previous lung diseases influence lung cancer risk independently of tobacco use and that these diseases are important for assessing individual risk.
PMCID: PMC3530374  PMID: 22986146
bronchitis; chronic; emphysema; lung diseases; lung neoplasms; meta-analysis; pneumonia; pulmonary disease; chronic obstructive; tuberculosis
7.  Fibulin-3 as a Blood and Effusion Biomarker for Pleural Mesothelioma 
The New England journal of medicine  2012;367(15):1417-1427.
New biomarkers are needed to detect pleural mesothelioma at an earlier stage and to individualize treatment strategies. We investigated whether fibulin-3 in plasma and pleural effusions could meet sensitivity and specificity criteria for a robust biomarker.
We measured fibulin-3 levels in plasma (from 92 patients with mesothelioma, 136 asbestos-exposed persons without cancer, 93 patients with effusions not due to mesothelioma, and 43 healthy controls), effusions (from 74 patients with mesothelioma, 39 with benign effusions, and 54 with malignant effusions not due to mesothelioma), or both. A blinded validation was subsequently performed. Tumor tissue was examined for fibulin-3 by immunohistochemical analysis, and levels of fibulin-3 in plasma and effusions were measured with an enzyme-linked immunosorbent assay.
Plasma fibulin-3 levels did not vary according to age, sex, duration of asbestos exposure, or degree of radiographic changes and were significantly higher in patients with pleural mesothelioma (105±7 ng per milliliter in the Detroit cohort and 113±8 ng per milliliter in the New York cohort) than in asbestos-exposed persons without mesothelioma (14±1 ng per milliliter and 24±1 ng per milliliter, respectively; P<0.001). Effusion fibulin-3 levels were significantly higher in patients with pleural mesothelioma (694±37 ng per milliliter in the Detroit cohort and 636±92 ng per milliliter in the New York cohort) than in patients with effusions not due to mesothelioma (212±25 and 151±23 ng per milliliter, respectively; P<0.001). Fibulin-3 preferentially stained tumor cells in 26 of 26 samples. In an overall comparison of patients with and those without mesothelioma, the receiver-operating-characteristic curve for plasma fibulin-3 levels had a sensitivity of 96.7% and a specificity of 95.5% at a cutoff value of 52.8 ng of fibulin-3 per milliliter. In a comparison of patients with early-stage mesothelioma with asbestos-exposed persons, the sensitivity was 100% and the specificity was 94.1% at a cutoff value of 46.0 ng of fibulin-3 per milliliter. Blinded validation revealed an area under the curve of 0.87 for plasma specimens from 96 asbestos-exposed persons as compared with 48 patients with mesothelioma.
Plasma fibulin-3 levels can distinguish healthy persons with exposure to asbestos from patients with mesothelioma. In conjunction with effusion fibulin-3 levels, plasma fibulin-3 levels can further differentiate mesothelioma effusions from other malignant and benign effusions. (Funded by the Early Detection Research Network, National Institutes of Health, and others.)
PMCID: PMC3761217  PMID: 23050525
8.  Special considerations in prognostic research in cancer involving genetic polymorphisms 
BMC Medicine  2013;11:149.
Analysis of genetic polymorphisms may help identify putative prognostic markers and determine the biological basis of variable prognosis in patients. However, in contrast to other variables commonly used in the prognostic studies, there are special considerations when studying genetic polymorphisms. For example, variable inheritance patterns (recessive, dominant, codominant, and additive genetic models) need to be explored to identify the specific genotypes associated with the outcome. In addition, several characteristics of genetic polymorphisms, such as their minor allele frequency and linkage disequilibrium among multiple polymorphisms, and the population substructure of the cohort investigated need to be accounted for in the analyses. In addition, in cancer research due to the genomic differences between the tumor and non-tumor DNA, differences in the genetic information obtained using these tissues need to be carefully assessed in prognostic studies. In this article, we review these and other considerations specific to genetic polymorphism by focusing on genetic prognostic studies in cancer.
PMCID: PMC3729672  PMID: 23773794
Genetic models; Genetic polymorphisms; Genetic prognostic factors; Genotypes; Prognostic research; Tumor DNA
9.  Association between UGT1A1*28 Polymorphisms and Clinical Outcomes of Irinotecan-Based Chemotherapies in Colorectal Cancer: A Meta-Analysis in Caucasians 
PLoS ONE  2013;8(3):e58489.
Whether UGT1A1*28 genotype is associated with clinical outcomes of irinotecan (IRI)-based chemotherapy in Colorectal cancer (CRC) is an important gap in existing knowledge to inform clinical utility. Published data on the association between UGT1A1*28 gene polymorphisms and clinical outcomes of IRI-based chemotherapy in CRC were inconsistent.
Methodology/Principal Findings
Literature retrieval, trials selection and assessment, data collection, and statistical analysis were performed according to the PRISMA guidelines. Primary outcomes included therapeutic response (TR), progression-free survival (PFS) and overall survival (OS). We calculated odds ratios (OR) and hazard ratios (HR) with 95% confidence intervals (CI). Twelve clinical trials were included. No statistical heterogeneity was detected in analyses of all studies and for each subgroup. Differences in TR, PFS and OS for any genotype comparison, UGT1A1*28/*28 versus (vs) UGT1A1*1/*1 (homozygous model), UGT1A1*1/*28 vs UGT1A1*1/*1 (heterozygous model), and UGT1A1*28/*28 vs all others (recessive model, only for TR) were not statistically significant. IRI dose also did not impact upon TR and PFS differences between UGT1A1 genotype groups. A statistically significant increase in the hazard of death was found in Low IRI subgroup of the homozygous model (HR = 1.48, 95% CI = 1.06–2.07; P = 0.02). The UGT1A1*28 allele was associated with a trend of increase in the hazard of death in two models (homozygous model: HR = 1.22, 95% CI = 0.99–1.51; heterozygous model: HR = 1.13, 95% CI = 0.96–1.32). These latter findings were driven primarily by one single large study (Shulman et al. 2011).
UGT1A1*28 polymorphism cannot be considered as a reliable predictor of TR and PFS in CRC patients treated with IRI-based chemotherapy. The OS relationship with UGT1A1*28 in the patients with lower-dose IRI chemotherapy requires further validation.
PMCID: PMC3597733  PMID: 23516488
10.  Interactions between Environmental Factors and Polymorphisms in Angiogenesis Pathway Genes in Esophageal Adenocarcinoma Risk: A Case-Only Study 
Cancer  2011;118(3):804-811.
Gastroesophageal reflux symptoms (GERD), higher body mass index (BMI), smoking, and genetic variants in angiogenic pathway genes have been individually associated with increased risk of esophageal adenocarcinoma (EA). However, how angiogenic gene polymorphisms and environmental factors jointly affect EA development remains unclear.
Using a case-only design (n = 335), we examined interaction between 141 functional/tagging angiogenic SNPs and environmental factors (GERD, BMI, smoking) in modulating EA risk. Gene-environment interactions were assessed by a two-step approach. First, we applied random forest (RF) to screen for important SNPs that had either main or interaction effects. Second, we used case-only logistic regression (LR) to assess the effects of gene-environment interactions on EA risk, adjusting for covariates and false-discovery rate (FDR).
RF analyses identified three sets of SNPs (17 SNPs-GERD, 26 SNPs-smoking, and 34 SNPs-BMI) that had the highest importance scores. In subsequent LR analyses, interactions between 3 SNPs (rs2295778 of HIF1AN, rs133376 of TSC2, and rs2519757 of TSC1) and GERD, 2 SNPs (rs2295778 of HIF1AN, rs2296188 (VEGFR1) and smoking, and 7 SNPs (rs2114039 of PDGRFA, rs2296188 of VEGFR1, rs11941492 of VEGFR1, rs3756309 of PDGFRB, rs7324547 of VEGFR1, rs17619601 of VEGFR1, and rs17625898 of VEGFR1) and BMI were significantly associated with EA development (all FDR ≤0.10). Moreover, these interactions tended to have a SNP dose-response effects for increased EA risk with increasing number of combined risk genotypes.
These findings suggest that genetic variations in angiogenic genes may modify EA susceptibility through interactions with environmental factors in a SNP dose-response manner.
PMCID: PMC3193872  PMID: 21751195
Esophageal adenocarcinoma; angiogenesis pathway genes; gene-environment interaction; case-only analysis
11.  Kernel Machine SNP-set Analysis for Censored Survival Outcomes in Genome-wide Association Studies 
Genetic Epidemiology  2011;35(7):620-631.
In this paper, we develop a powerful test for identifying SNP-sets that are predictive of survival with data from genome-wide association studies (GWAS). We first group typed SNPs into SNP-sets based on genomic features and then apply a score test to assess the overall effect of each SNP-set on the survival outcome through a kernel machine Cox regression framework. This approach uses genetic information from all SNPs in the SNP-set simultaneously and accounts for linkage disequilibrium (LD), leading to a powerful test with reduced degrees of freedom when the typed SNPs are in LD with each other. This type of test also has the advantage of capturing the potentially non-linear effects of the SNPs, SNP-SNP interactions (epistasis), and the joint effects of multiple causal variants. By simulating SNP data based on the LD structure of real genes from the HapMap project, we demonstrate that our proposed test is more powerful than the standard single SNP minimum p-value based test for association studies with censored survival outcomes. We illustrate the proposed test with a real data application.
PMCID: PMC3373190  PMID: 21818772
cox model; genetic studies; gene-based analysis; kernel machine; multi-locus test; score test; single nucleotide polymorphism
12.  Genetic associations with sporadic neuroendocrine tumor risk 
Carcinogenesis  2011;32(8):1216-1222.
Genetic risk factors for sporadic neuroendocrine tumors (NET) are poorly understood. We tested risk associations in patients with sporadic NET and non-cancer controls, using a custom array containing 1536 single-nucleotide polymorphisms (SNPs) in 355 candidate genes. We identified 18 SNPs associated with NET risk at a P-value <0.01 in a discovery set of 261 cases and 319 controls. Two of these SNPs were found to be significantly associated with NET risk in an independent replication set of 235 cases and 113 controls, at a P value ≤0.05. An SNP in interleukin 12A (IL12A rs2243123), a gene implicated in inflammatory response, replicated with an adjusted odds ratio (95% confidence interval) (aOR) = 1.47 (1.03, 2.11) P-trend = 0.04. A second SNP in defender against cell death, (DAD1 rs8005354), a gene that modulates apoptosis, replicated at aOR = 1.43 (1.02, 2.02) P-trend = 0.04. Consistent with our observations, a pathway analysis, performed in the discovery set, suggested that genetic variation in inflammatory pathways or apoptosis pathways is associated with NET risk. Our findings support further investigation of the potential role of IL12A and DAD1 in the etiology of NET.
PMCID: PMC3149206  PMID: 21606320
13.  Interactions between genetic polymorphisms in the apoptotic pathway and environmental factors on esophageal adenocarcinoma risk 
Carcinogenesis  2011;32(4):502-506.
How genetic variations in apoptosis pathway interact with environmental factors to contribute to esophageal adenocarcinoma (EA) risk has not been comprehensively investigated. We conducted a case-only analysis in 335 Caucasian EA patients that were genotyped for 242 single nucleotide polymorphisms (SNPs) in 43 apoptotic genes. Gene–environment interactions were assessed using a two-step approach. First, random forest algorithm was used to screen for the potential interacting markers. Next, we used case-only logistic regression model to estimate the effects of gene–environment interactions on EA risk. Four SNPs (PERP rs648802; PIK3CA rs4855094, rs7644468 and TNFRSF1A rs4149579) had significant interaction with gastroesophageal reflux disease (GERD). The presence of variant alleles in TP53BP1 rs560191, CASP7 rs7907519 or BCL2 rs12454712 enhanced the risk of smoking by 2.08–2.58 times [interaction odds ratio (ORi) = 2.08–2.58, adjusted P-value (Padj) = 0.02–0.04]. Compared with patients carrying ≤1 risk genotype, the risk of GERD on EA was increased in persons with two (ORi = 1.89, Padj = 0.016) or ≥3 (ORi = 4.30, Padj < 0.0001) risk genotypes. Compared with cases with ≤1 risk genotype, smoking-associated EA risk increased by 3.15 times when ≥2 risk genotypes were present (ORi = 3.15, Padj < 0.0001). In conclusion, interactions among apoptotic SNPs and GERD or smoking play an important role in EA development.
PMCID: PMC3066416  PMID: 21212151
14.  Dietary Vitamin D Intake and Serum 25-Hydroxyvitamin D Level in Relation to Disease Outcomes in Head and Neck Cancer Patients 
Low pre-treatment vitamin D status has been associated with worsened disease outcomes in patients with cancer at various sites. Its prognostic significance in head and neck cancer (HNC) patients has not been studied.
Patients with HNC who participated in a randomized trial were evaluated for: (i) total intake of vitamin D from diet and supplements using a validated food frequency questionnaire (all trial participants, n=540) and (ii) pre-treatment serum 25-hydroxyvitamin D through a radioimmunoassay (n=522). The association of dietary/serum measures of vitamin D status with HNC recurrence, second primary cancer (SPC) incidence, and overall mortality was evaluated using multivariate Cox proportional hazard models.
There was no significant association between dietary or serum vitamin D measures and the three HNC outcomes. The hazard ratios (HR) comparing the highest to the lowest quartile of dietary/supplemental vitamin D intake were 1.10 (95% confidence interval (CI): 0.66-1.84) for recurrence, 1.05 (95% CI: 0.63-1.74) for SPC, and 1.27 (95% CI: 0.87-1.84) for overall mortality. HRs comparing the uppermost to the lowest quartile of serum 25-hydroxyvitamin D levels were 1.12 (95% CI: 0.65-1.93) for recurrence, 0.72 (95% CI: 0.40-1.30) for SPC, and 0.85 (95% CI: 0.57-1.28) for overall mortality. There was no effect modification by cancer stage, season of initial treatment, or trial arm.
Among patients with HNC, vitamin D status before treatment does not influence disease outcomes. Our results contrast with those from most published studies which suggest prognostic significance of vitamin D status in cancer patients at least in subgroups.
PMCID: PMC2990799  PMID: 20533282
15.  Comparison of Pathway Analysis Approaches Using Lung Cancer GWAS Data Sets 
PLoS ONE  2012;7(2):e31816.
Pathway analysis has been proposed as a complement to single SNP analyses in GWAS. This study compared pathway analysis methods using two lung cancer GWAS data sets based on four studies: one a combined data set from Central Europe and Toronto (CETO); the other a combined data set from Germany and MD Anderson (GRMD). We searched the literature for pathway analysis methods that were widely used, representative of other methods, and had available software for performing analysis. We selected the programs EASE, which uses a modified Fishers Exact calculation to test for pathway associations, GenGen (a version of Gene Set Enrichment Analysis (GSEA)), which uses a Kolmogorov-Smirnov-like running sum statistic as the test statistic, and SLAT, which uses a p-value combination approach. We also included a modified version of the SUMSTAT method (mSUMSTAT), which tests for association by averaging χ2 statistics from genotype association tests. There were nearly 18000 genes available for analysis, following mapping of more than 300,000 SNPs from each data set. These were mapped to 421 GO level 4 gene sets for pathway analysis. Among the methods designed to be robust to biases related to gene size and pathway SNP correlation (GenGen, mSUMSTAT and SLAT), the mSUMSTAT approach identified the most significant pathways (8 in CETO and 1 in GRMD). This included a highly plausible association for the acetylcholine receptor activity pathway in both CETO (FDR≤0.001) and GRMD (FDR = 0.009), although two strong association signals at a single gene cluster (CHRNA3-CHRNA5-CHRNB4) drive this result, complicating its interpretation. Few other replicated associations were found using any of these methods. Difficulty in replicating associations hindered our comparison, but results suggest mSUMSTAT has advantages over the other approaches, and may be a useful pathway analysis tool to use alongside other methods such as the commonly used GSEA (GenGen) approach.
PMCID: PMC3283683  PMID: 22363742
16.  Genome-wide DNA Methylation Profiling of Cell-Free Serum DNA in Esophageal Adenocarcinoma and Barrett Esophagus12 
Neoplasia (New York, N.Y.)  2012;14(1):29-33.
Aberrant DNA methylation (DNAm) is a feature of most types of cancers. Genome-wide DNAm profiling has been performed successfully on tumor tissue DNA samples. However, the invasive procedure limits the utility of tumor tissue for epidemiological studies. While recent data indicate that cell-free circulating DNAm (cfDNAm) profiles reflect DNAm status in corresponding tumor tissues, no studies have examined the association of cfDNAm with cancer or precursors on a genome-wide scale. The objective of this pilot study was to evaluate the putative significance of genome-wide cfDNAm profiles in esophageal adenocarcinoma (EA) and Barrett esophagus (BE, EA precursor). We performed genome-wide DNAm profiling in EA tissue DNA (n = 8) and matched serum DNA (n = 8), in serum DNA of BE (n = 10), and in healthy controls (n = 10) using the Infinium HumanMethylation27 BeadChip that covers 27,578 CpG loci in 14,495 genes. We found that cfDNAm profiles were highly correlated to DNAm profiles in matched tumor tissue DNA (r = 0.92) in patients with EA. We selected the most differentially methylated loci to perform hierarchical clustering analysis. We found that 911 loci can discriminate perfectly between EA and control samples, 554 loci can separate EA from BE samples, and 46 loci can distinguish BE from control samples. These results suggest that genome-wide cfDNAm profiles are highly consistent with DNAm profiles detected in corresponding tumor tissues. Differential cfDNAm profiling may be a useful approach for the noninvasive screening of EA and EA premalignant lesions.
PMCID: PMC3281939  PMID: 22355271
17.  A pathway-based association analysis model using common and rare variants 
BMC Proceedings  2011;5(Suppl 9):S85.
How various genetic effects in combination affect susceptibility to certain disease states continues to be a major area of methodological research. Various rare variant models have been proposed, in response to a common failure to either identify or validate biologically driven causal genetic variants in genome-wide association studies. Adopting the idea that multiple rare variants may effectively produce a combined effect equal to a single common variant effect through common linkage with this variant, we construct a pathway-based genetic association analysis model using both common and rare variants. This genetic model is applied to the disease status of unrelated individuals in replication 1 from Genetic Analysis Workshop 17. In this simulated example, we were able to identify several pathways that were potentially associated with the disease status and found that common variants showed stronger genetic effect than rare variants.
PMCID: PMC3287926  PMID: 22373433
18.  Addition of multiple rare SNPs to known common variants improves the association between disease and gene in the Genetic Analysis Workshop 17 data 
BMC Proceedings  2011;5(Suppl 9):S97.
The upcoming release of new whole-genome genotyping technologies will shed new light on whether there is an associative effect of previously immeasurable rare variants on incidence of disease. For Genetic Analysis Workshop 17, our team focused on a statistical method to detect associations between gene-based multiple rare variants and disease status. We added a combination of rare SNPs to a common variant shown to have an influence on disease status. This method provides us with an enhanced ability to detect the effect of these rare variants, which, modeled alone, would normally be undetectable. Adjusting for significant clinical parameters, several genes were found to have multiple rare variants that were significantly associated with disease outcome.
PMCID: PMC3287939  PMID: 22373301
19.  A Large-scale genetic association study of esophageal adenocarcinoma risk 
Carcinogenesis  2010;31(7):1259-1263.
The incidence of esophageal adenocarcinoma (EA) has been increasing rapidly, particularly among white males, over the past few decades in the USA. However, the etiology of EA and the striking male predominance is not fully explained by known risk factors. To identify susceptible genes for EA risk, we conducted a pathway-based candidate gene association study on 335 Caucasian EA cases and 319 Caucasian controls. A total of 1330 single-nucleotide polymorphisms (SNPs) selected from 354 genes were analyzed using an Illumina GoldenGate assay. The genotyped common SNPs include missense and exonic SNPs, SNPs within untranslated regions and 2 kb 5′ of the gene, and tagSNPs for genes with little functional information available. Logistic regression adjusted for potential confounders was used to assess the genetic effect of each SNP on EA risk. We also tested gene–gender interactions using the likelihood ratio tests. We found that the genetic variants in the apoptosis pathway were significantly associated with EA risk after correcting for multiple comparisons. SNPs of rs3127075 in Caspase-7 (CASP7) and rs4661636 in Caspase-9 (CASP9) genes that play a critical role in apoptosis were found to be associated with an increased risk of EA. A protective effect of SNP rs572483 in the progesterone receptor (PGR) gene was observed among women carrying the variant G allele [adjusted odds ratio (OR) = 0.19; 95% confidence interval (CI) = 0.08–0.46] but was not observed among men (adjusted OR = 1.38; 95% CI = 0.95–2.00). In conclusion, this study suggests that the genetic variants of CASP7 and CASP9 in the apoptosis pathway may be important predictive markers for EA susceptibility and that PGR in the sex hormone signaling pathway may be associated with the gender differences in EA risk.
PMCID: PMC2893800  PMID: 20453000
20.  Polymorphisms of the NER pathway genes, ERCC1 and XPD are associated with esophageal adenocarcinoma risk 
Cancer causes & control : CCC  2008;19(10):1077-1083.
Functional variation in DNA repair capacity through single nucleotide polymorphisms (SNPs) of key repair genes is associated with a higher risk of developing various types of cancer. Studies have focused on the nucleotide excision repair (NER) and base excision repair (BER) pathways. We investigated whether variant alleles in seven SNPs within these pathways increased the risk of esophageal adenocarcinoma.
DNA was extracted from prospectively collected blood specimens. The samples were genotyped for SNPs in NER genes (XPD Lys751Gln, XPD Asp312Asn, ERCC1 8092C/A, and ERCC1 118C/T), and BER genes (XRCC1 Arg399Gln, APE1 Asp148Glu, and hOGG1 Ser326Cys). The presence of variant alleles was correlated with risk of esophageal adenocarcinoma both individually and jointly.
Variant alleles in NER SNPs XPD Lys751Gln (AOR = 1.50, 95% CI 1.1–2.0), ERCC1 8092 C/A (AOR = 1.44, 95% CI 1.1–1.9), and ERCC1 118C/T (AOR = 1.42, 95% CI 1.0–1.9) were individually associated with esophageal adenocarcinoma risk. An increasing number of variant alleles in NER SNPs showed a significant trend with esophageal adenocarcinoma risk (p = 0.007).
The presence of variant alleles in NER genes increases risk of esophageal adenocarcinoma. There is evidence of an additive role for SNPs along a common DNA repair pathway. Future larger studies of esophageal adenocarcinoma etiology should evaluate entire biological pathways.
PMCID: PMC3106102  PMID: 18478337
DNA repair; Esophageal cancer; Adenocarcinoma; Polymorphism; Nucleotide excision pathway
21.  Genetic variation in DNA-repair pathways and response to radiochemotherapy in esophageal adenocarcinoma: a retrospective cohort study of the Eastern Cooperative Oncology Group 
BMC Cancer  2011;11:176.
Recent data in esophageal cancer suggests the variant allele of a single-nucleotide polymorphism (SNP) in XRCC1 may be associated with resistance to radiochemotherapy. However, this SNP has not been assessed in a histologically homogeneous clinical trial cohort that has been treated with a uniform approach. In addition, whether germline DNA may serve as a surrogate for tumor genotype at this locus is unknown in this disease. Our objective was to assess this SNP in relation to the pathologic complete response (pCR) rate in subjects with esophageal adenocarcinoma who received cisplatin-based preoperative radiochemotherapy in a multicenter clinical trial (Eastern Cooperative Oncology Group 1201). As a secondary aim, we investigated the rate of allelic imbalance between germline and tumor DNA.
Eighty-one eligible treatment-naïve subjects with newly diagnosed resectable esophageal adenocarcinoma received radiotherapy (45 Gy) concurrent with cisplatin-based chemotherapy, with planned subsequent surgical resection. The primary endpoint was pCR, defined as complete absence of tumor in the surgical specimen after radiochemotherapy. Using germline DNA from 60 subjects, we examined the base-excision repair SNP, XRCC1 Arg399Gln, and 4 other SNPs in nucleotide excision (XPD Lys751Gln and Asp312Asn, ERCC1 3' flank) and double-stranded break (XRCC2 5' flank) repair pathways, and correlated genotype with pCR rate. Paired tumor tissue was used to estimate the frequency of allelic imbalance at the XRCC1 SNP.
The variant allele of the XRCC1 SNP (399Gln) was detected in 52% of subjects. Only 6% of subjects with the variant allele experienced a pCR, compared to 28% of subjects without the variant allele (odds ratio 5.37 for failing to achieve pCR, p = 0.062). Allelic imbalance at this locus was found in only 10% of informative subjects, suggesting that germline genotype may reflect tumor genotype at this locus. No significant association with pCR was noted for other SNPs.
Assessed for the first time in a prospective, interventional trial cohort of esophageal adenocarcinoma, XRCC1 399Gln was associated with resistance to radiochemotherapy. Further investigation of this genetic variation is warranted in larger cohorts. In addition, these data indicate that germline genotype may serve as a surrogate for tumor genotype at this locus.
PMCID: PMC3118194  PMID: 21586140
22.  Interactions Among Genetic Variants in Apoptosis Pathway Genes, Reflux Symptoms, Body Mass Index, and Smoking Indicate Two Distinct Etiologic Patterns of Esophageal Adenocarcinoma 
Journal of Clinical Oncology  2010;28(14):2445-2451.
Apoptosis pathway, gastroesophageal reflux symptoms (reflux), higher body mass index (BMI), and tobacco smoking have been individually associated with esophageal adenocarcinoma (EA) development. However, how multiple factors jointly affect EA risk remains unclear.
Patients and Methods
In total, 305 patients with EA and 339 age- and sex-matched controls were studied. High-order interactions among reflux, BMI, smoking, and functional polymorphisms in five apoptotic genes (FAS, FASL, IL1B, TP53BP, and BAT3) were investigated by entropy-based multifactor dimensionality reduction (MDR), classification and regression tree (CART), and traditional logistic regression (LR) models.
In LR analysis, reflux, BMI, and smoking were significantly associated with EA risk, with reflux as the strongest individual factor. No individual single nucleotide polymorphism was associated with EA susceptibility. However, there was a two-way interaction between IL1B + 3954C>T and reflux (P = .008). In both CART and MDR analyses, reflux was also the strongest individual factor for EA risk. In individuals with reflux symptoms, CART analysis indicated that strongest interaction was among variant genotypes of IL1B + 3954C>T and BAT3S625P, higher BMI, and smoking (odds ratio [OR], 5.76; 95% CI, 2.48 to13.38), a finding independently found using MDR analysis. In contrast, for participants without reflux symptoms, the strongest interaction was found between higher BMI and smoking (OR, 3.27; 95% CI, 1.88 to 5.68), also echoed by entropy-based MDR analysis.
Although a history of reflux is an important risk for EA, multifactor interactions also play important roles in EA risk. Gene-environment interaction patterns differ between patients with and without reflux symptoms.
PMCID: PMC2881724  PMID: 20385987
23.  Cisplatin pharmacogenetics, DNA repair polymorphisms, and esophageal cancer outcomes 
Pharmacogenetics and genomics  2009;19(8):613-625.
Genetic variations or polymorphisms within genes of the nucleotide excision repair (NER) pathway alter DNA repair capacity. Reduced DNA repair (NER) capacity may result in tumors that are more susceptible to cisplatin chemotherapy, which functions by causing DNA damage. We investigated the potential predictive significance of functional NER single nucleotide polymorphisms in esophageal cancer patients treated with (n = 262) or without (n = 108) cisplatin.
Four NER polymorphisms XPD Asp312Asn; XPD Lys751Gln, ERCC1 8092C/A, and ERCC1 codon 118C/T were each assessed in polymorphism–cisplatin treatment interactions for overall survival (OS), with progression-free survival (PFS) as a secondary endpoint.
No associations with ERCC1 118 were found. Polymorphism–cisplatin interactions were highly significant in both OS (P = 0.002, P = 0.0001, and P < 0.0001) and PFS (P = 0.006, P = 0.008, and P = 0.0007) for XPD 312, XPD 751, and ERCC1 8092, respectively. In cisplatin-treated patients, variant alleles of XPD 312, XPD 751, and ERCC1 8092 were each associated with significantly improved OS (and PFS): adjusted hazard ratios of homozygous variants versus wild-type ranged from 0.22 [95% confidence interval (CI): 0.1–0.5] to 0.31 (95% CI: 0.1–0.7). In contrast, in patients who did not receive cisplatin, variant alleles of XPD 751 and ERCC1 8092 had significantly worse survival, with adjusted hazard ratios of homozygous variants ranging from 2.47 (95% CI: 1.1–5.5) to 3.73 (95% CI: 1.6–8.7). Haplotype analyses affirmed these results.
DNA repair polymorphisms are associated with OS and PFS, and if validated may predict for benefit from cisplatin therapy in patients with esophageal cancer.
PMCID: PMC3085844  PMID: 19620936
DNA repair; esophageal cancer; genetic polymorphisms
24.  p53 Arg72Pro and MDM2 T309G Polymorphisms, Histology, and Esophageal Cancer Prognosis 
This study aimed to evaluate the prognostic significance of two functional single nucleotide polymorphisms (SNP) in the p53 pathway (p53 Arg72Pro and MDM2 T309G) in patients with esophageal cancer, and to determine the importance of histologic subtype in the SNP-outcome relationships.
Experimental Design
A cohort of 371 patients with esophageal carcinoma enrolled in Boston, USA from 1999 to 2004 were genotyped for the p53 and MDM2 SNPs. Associations between genotypes and overall survival (OS; the primary outcome) and progression-free survival (PFS) were assessed using the Kaplan-Meier method. Cox proportional hazard models, adjusted for age, stage, performance status, and smoking were developed. Interaction analyses were done for histology (adenocarcinoma versus squamous cell carcinoma).
At the median follow-up of 33 months, median survival (MS) and PFS were 29.1 and 15.7 months, respectively. p53 Pro/Pro was strongly associated with shorter survival in the entire cohort (MS of 11.8 versus 29.1 months, P < 0.0001; adjusted hazard ratio for death, 2.05; 95% confidence interval, 1.30–3.24; P = 0.002 for Pro/Pro versus Arg/Arg). MDM2 G/G was associated with markedly reduced survival in squamous cell carcinoma (MS of 10.3 versus 49.4 months; adjusted hazard ratio for death, 7.9; 95% confidence interval, 2.4–26.0; P = 0.0007 for G/G versus T/T) but not in adenocarcinoma (SNP-histology interaction P = 0.004).
In a large prospective cohort, p53 Arg72Pro Pro/Pro was associated with a 2-fold increased risk of death in all esophageal cancers, whereas MDM2 T309G G/G was associated with a 7-fold increased risk of death in squamous cell carcinoma.
PMCID: PMC3081782  PMID: 19383811
25.  Association between a 15q25 gene variant, smoking quantity and tobacco-related cancers among 17 000 individuals 
Background Genetic variants in 15q25 have been identified as potential risk markers for lung cancer (LC), but controversy exists as to whether this is a direct association, or whether the 15q variant is simply a proxy for increased exposure to tobacco carcinogens.
Methods We performed a detailed analysis of one 15q single nucleotide polymorphism (SNP) (rs16969968) with smoking behaviour and cancer risk in a total of 17 300 subjects from five LC studies and four upper aerodigestive tract (UADT) cancer studies.
Results Subjects with one minor allele smoked on average 0.3 cigarettes per day (CPD) more, whereas subjects with the homozygous minor AA genotype smoked on average 1.2 CPD more than subjects with a GG genotype (P < 0.001). The variant was associated with heavy smoking (>20 CPD) [odds ratio (OR) = 1.13, 95% confidence interval (CI) 0.96–1.34, P = 0.13 for heterozygotes and 1.81, 95% CI 1.39–2.35 for homozygotes, P < 0.0001]. The strong association between the variant and LC risk (OR = 1.30, 95% CI 1.23–1.38, P = 1 × 10–18), was virtually unchanged after adjusting for this smoking association (smoking adjusted OR = 1.27, 95% CI 1.19–1.35, P = 5 × 10–13). Furthermore, we found an association between the variant allele and an earlier age of LC onset (P = 0.02). The association was also noted in UADT cancers (OR = 1.08, 95% CI 1.01–1.15, P = 0.02). Genome wide association (GWA) analysis of over 300 000 SNPs on 11 219 subjects did not identify any additional variants related to smoking behaviour.
Conclusions This study confirms the strong association between 15q gene variants and LC and shows an independent association with smoking quantity, as well as an association with UADT cancers.
PMCID: PMC2913450  PMID: 19776245
Lung cancer; nicotine dependence; smoking quantity; UADT cancer

Results 1-25 (37)