Search tips
Search criteria

Results 1-25 (88)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
more »
1.  Global assessment of genetic variation influencing response to retinoid chemoprevention in head and neck cancer patients 
Head and neck squamous cell carcinoma (HNSCC) patients are at an increased risk of developing a second primary tumor (SPT) or recurrence following curative treatment. 13-cis-retinoic acid (13-cRA) has been tested in chemoprevention clinical trials but the results have been inconclusive. We genotyped 9,465 SNPs in 450 patients from the Retinoid Head and Neck Second Primary Trial. SNPs were analyzed for associations with SPT/recurrence in patients receiving placebo to identify prognosis markers and further analyzed for effects of 13-cRA in patients with these prognostic loci. Thirteen loci identified a majority subgroup of patients at a high risk of SPT/recurrence and in whom 13-cRA was protective. Patients carrying the common genotype of rs3118570 in the retinoid X receptor (RXRA) were at a 3.33-fold increased risk (95% confidence interval [CI], 1.67–6.67) and represented over 70% of the study population. This locus also identified individuals who received benefit from chemoprevention with a 38% reduced risk (95% CI, 0.43–0.90). Analyses of cumulative effect and potential gene-gene interactions also implicated CDC25C:rs6596428 and JAK2:rs1887427 as two other genetic loci with major roles in prognosis and 13-cRA response. Patients with all three common genotypes had a 76% reduction in SPT/recurrence (95% CI, 0.093–0.64) following 13-cRA chemoprevention. Carriers of these common genotypes constituted a substantial percentage of the study population, indicating that a pharmacogenetics approach could help select patients for 13-cRA chemoprevention. The lack of any alternatives for reducing risk in these patients highlights the need for future clinical trials to prospectively validate our findings.
PMCID: PMC3955084  PMID: 21292633
HNSCC; SPT; single nucleotide polymorphisms; retinoids
2.  Ionizing radiation-induced γ-H2AX activity in whole blood culture and the risk of lung cancer 
Phenotypic biomarkers of DNA damage repair may enhance cancer risk prediction. The γ-H2AX formed at the sites of double strands break (DSB) after ionizing radiation (IR) is a specific marker of DNA damage.
In an ongoing case-control study, the baseline and IR-induced γ-H2AX levels in peripheral blood lymphocytes (PBLs) from frequency-matched 306 untreated lung cancer patients and 306 controls were measured by a laser scanning cytometer-based immunocytochemical method. The ratio of IR-induced γ-H2AX level to the baseline was used to evaluate inter-individual variation of DSB damage response and to assess the risk of lung cancer by using unconditional multivariable logistic regression with adjustment of age, sex, ethnicity, smoking status, family history of lung cancer, dust exposure and emphysema.
The mean γ-H2AX ratio was significantly higher in cases than controls (1.46±0.14 vs. 1.41±0.12, P < 0.001). Dichotomized at the median in controls, high γ-H2AX ratio was significantly associated with increased risk of lung cancer (OR = 2.43, 95% CI: 1.66–3.56). There was also a significant dose-response relationship between γ-H2AX ratio and lung cancer risk in quartile analysis. Analysis of joint effects with other epidemiological risk factors revealed elevated risk with increasing number of risk factors.
γ-H2AX activity as shown by measuring DSB damage in IR-irradiated PBLs may be a novel phenotypic marker of lung cancer risk.
γ-H2AX assay is a robust and quantifiable image-based cytometer method that measures mutagen-induced DSB response in PBLs as a potential biomarker in lung cancer risk assessment.
PMCID: PMC3601549  PMID: 23300022
Double strands break; γ-H2AX; mutagen sensitivity; lung cancer risk
3.  MicroRNA expression signatures during malignant progression from Barrett’s esophagus to esophageal adenocarcinoma 
Barrett’s esophagus (BE) is the precursor lesion of esophageal adenocarcinoma (EA), whose progression follows sequential stages. However, the low progression rate and the inadequacy and subjective interpretation of histological grading in predicting BE progression call for more objective biomarkers that can improve risk prediction. We performed a genome-wide profiling of 754 human microRNAs (miRNAs) in 35 normal epithelium (NE), 34 BE, and 36 EA tissues using Taqman real-time PCR-based profiling. Unsupervised hierarchical clustering using 294 modestly to highly expressed miRNAs showed clear clustering of two groups: NE versus BE/EA tissues. Moreover, there was an excellent clustering of Barrett’s metaplasia (BM, without dysplasia) tissues from NE tissues. However, BE tissues of different stages and EA tissues were interspersed. There were differentially expressed miRNAs at different stages. The majority of miRNA aberrations involved upregulation of expression in BE and EA tissues, with the most dramatic alterations occurring at the BM stage. Known oncomirs, such as miR-21, miR-25 and miR-223, and tumor suppressor miRNAs, including miR-205, miR-203, let-7c, and miR-133a, showed progressively altered expression from BE to EA. We also identified a number of novel miRNAs that showed progressively altered expression, including miR-301b, miR-618, and miR-23b. The significant miRNA alterations that were exclusive to EA but not BE included miR-375 downregulation and upregulation of five members of the miR-17-92 and its homologue clusters, which may become promising biomarkers for EA development.
PMCID: PMC3608471  PMID: 23466817
microRNA expression; Barrett’s esophagus; esophageal cancer
4.  Regulation of matrix metalloproteinase-9 protein expression by 1α,25-(OH)2D3 during osteoclast differentiation 
Journal of Veterinary Science  2014;15(1):133-140.
To investigate 1α,25-(OH)2D3 regulation of matrix metalloproteinase-9 (MMP-9) protein expression during osteoclast formation and differentiation, receptor activator of nuclear factor κB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF) were administered to induce the differentiation of RAW264.7 cells into osteoclasts. The cells were incubated with different concentrations of 1α,25-(OH)2D3 during culturing, and cell proliferation was measured using the methylthiazol tetrazolium method. Osteoclast formation was confirmed using tartrate-resistant acid phosphatase (TRAP) staining and assessing bone lacunar resorption. MMP-9 protein expression levels were measured with Western blotting. We showed that 1α,25-(OH)2D3 inhibited RAW264.7 cell proliferation induced by RANKL and M-CSF, increased the numbers of TRAP-positive osteoclasts and their nuclei, enhanced osteoclast bone resorption, and promoted MMP-9 protein expression in a concentration-dependent manner. These findings indicate that 1α,25-(OH)2D3 administered at a physiological relevant concentration promoted osteoclast formation and could regulate osteoclast bone metabolism by increasing MMP-9 protein expression during osteoclast differentiation.
PMCID: PMC3973756  PMID: 24136216
1α,25-(OH)2D3; bone lacunar resorption; MMP-9; osteoclast; TRAP
5.  Genome-Wide Catalogue of Chromosomal Aberrations in Barrett’s Esophagus and Esophageal Adenocarcinoma: a High-Density SNP Array Analysis 
To better understand the molecular mechanisms behind esophageal adenocarcinoma (EAC) tumorigenesis, we used high-density single nucleotide polymorphism (SNP) arrays to profile chromosomal aberrations at each of the four sequential progression stages – Barrett’s metaplasia (BM), low-grade dysplasia (LGD), high-grade dysplasia (HGD), and EAC, in 101 patients. We observed a significant trend toward increasing loss of chromosomes with higher progression stage. For BM, LGD, HGD, and EAC, respectively, the average numbers of chromosome arms with loss per sample were 0.30, 3.21, 7.70, and 11.90 (P for trend= 4.82 × 10−7), and the mean percentages of SNPs with allele loss were 0.1%, 1.8%, 6.6%, and 17.2% (P for trend = 2.64 × 10−6). In LGD, loss of 3p14.2 (68.4%) and 16q23.1 (47.4%) was limited to narrow regions within the FHIT (3p14.2) and WWOX (16q23.1) genes, whereas loss of 9p21 (68.4%) occurred in larger regions. A significant increase in the loss of other chromosomal regions was seen in HGD and EAC; loss of 17p (47.6%) was one of the most frequent events in EAC. Many recurrent small regions of chromosomal loss disrupted single genes, including FHIT, WWOX, RUNX1, KIF26B, MGC48628, PDE4D, C20orf133, GMDS, DMD, and PARK2, most of which are common fragile site (CFS) regions in the human genome. But RUNX1 at 21q22 appeared to be a potential tumor suppressor gene in EAC. Amplifications were less frequent than losses and mostly occurred in EAC. The 8q24 (containing Myc) and 8p23.1 (containing CTSB) were the two most frequently amplified regions. In addition, a significant trend toward increasing amplification was associated with higher progression stage.
PMCID: PMC3932797  PMID: 20651033
6.  Maize Yield Response to Water Supply and Fertilizer Input in a Semi-Arid Environment of Northeast China 
PLoS ONE  2014;9(1):e86099.
Maize grain yield varies highly with water availability as well as with fertilization and relevant agricultural management practices. With a 311-A optimized saturation design, field experiments were conducted between 2006 and 2009 to examine the yield response of spring maize (Zhengdan 958, Zea mays L) to irrigation (I), nitrogen fertilization (total nitrogen, urea-46% nitrogen,) and phosphorus fertilization (P2O5, calcium superphosphate-13% P2O5) in a semi-arid area environment of Northeast China. According to our estimated yield function, the results showed that N is the dominant factor in determining maize grain yield followed by I, while P plays a relatively minor role. The strength of interaction effects among I, N and P on maize grain yield follows the sequence N+I >P+I>N+P. Individually, the interaction effects of N+I and N+P on maize grain yield are positive, whereas that of P+I is negative. To achieve maximum grain yield (10506.0 kg·ha−1) for spring maize in the study area, the optimum application rates of I, N and P are 930.4 m3·ha−1, 304.9 kg·ha−1 and 133.2 kg·ha−1 respectively that leads to a possible economic profit (EP) of 10548.4 CNY·ha−1 (CNY, Chinese Yuan). Alternately, to obtain the best EP (10827.3 CNY·ha−1), the optimum application rates of I, N and P are 682.4 m3·ha−1, 241.0 kg·ha−1 and 111.7 kg·ha−1 respectively that produces a potential grain yield of 10289.5 kg·ha−1.
PMCID: PMC3896526  PMID: 24465896
7.  Increased plasma levels of soluble vascular endothelial growth factor (VEGF) receptor 1 (sFlt-1) in women by moderate exercise and increased plasma levels of VEGF in overweight/obese women 
The incidence of breast cancer is increasing worldwide, and this seems to be related to an increase in lifestyle risk factors, including physical inactivity, and overweight/obesity. We previously reported that exercise induced a circulating angiostatic phenotype characterized by increased sFlt-1 and endostatin and decreased unbound-VEGF in men. However, there is no data on women. The present study determines the following: 1) whether moderate exercise increased sFlt-1 and endostatin and decreased unbound-VEGF in the circulation of adult female volunteers; 2) whether overweight/obese women have a higher plasma level of unbound-VEGF than lean women. 72 African American and Caucasian adult women volunteers aged from 18–44 were enrolled into the exercise study. All the participants walked on a treadmill for 30 minutes at a moderate intensity (55–59% heart rate reserve), and oxygen consumption (VO2) was quantified by utilizing a metabolic cart. We had the blood samples before and immediately after exercise from 63 participants. ELISA assays (R&D Systems) showed that plasma levels of sFlt-1 were 67.8±3.7 pg/ml immediately after exercise (30 minutes), significantly higher than basal levels, 54.5±3.3 pg/ml, before exercise (P < 0.01; n=63). There was no significant difference in the % increase of sFlt-1 levels after exercise between African American and Caucasian (P=0.533) or between lean and overweight/obese women (P=0.892). There was no significant difference in plasma levels of unbound VEGF (35.28±5.47 vs. 35.23±4.96 pg/ml; P=0.99) or endostatin (111.12±5.48 vs. 115.45±7.15 ng/ml; P=0.63) before and after exercise. Basal plasma levels of unbound-VEGF in overweight/obese women were 52.26±9.6 pg/ml, significantly higher than basal levels of unbound-VEGF in lean women, 27.34±4.99 pg/ml (P < 0.05). The results support our hypothesis that exercise-induced plasma levels of sFlt-1 could be an important clinical biomarker to explore the mechanisms of exercise training in reducing breast cancer progression and that VEGF is an important biomarker in obesity and obesity-related cancer progression.
PMCID: PMC3449013  PMID: 22609636
Exercise; Young adult women; Overweight/obese; sFlt-1; Endostatin; VEGF
8.  Anti-IL-17 Antibody Improves Hepatic Steatosis by Suppressing Interleukin-17-Related Fatty Acid Synthesis and Metabolism 
To investigate the relationship between interleukin-17 and proteins involved in fatty acid metabolism with respect to alcoholic liver disease, male ICR mice were randomized into five groups: control, alcoholic liver disease (ALD) at 4 weeks, 8 weeks, and 12 weeks, and anti-IL-17 antibody treated ALD. A proteomic approach was adopted to investigate changes in liver proteins between control and ALD groups. The proteomic analysis was performed by two-dimensional difference gel electrophoresis. Spots of interest were subsequently subjected to nanospray ionization tandem mass spectrometry (MS/MS) for protein identification. Additionally, expression levels of selected proteins were confirmed by western blot. Transcriptional levels of some selected proteins were determined by RT-PCR. Expression levels of 95 protein spots changed significantly (ratio >1.5, P < 0.05) during the development of ALD. Sterol regulatory element-binding protein-lc (SREBP-1c), carbohydrate response element binding protein (ChREBP), enoyl-coenzyme A hydratase (ECHS1), and peroxisome proliferator-activated receptor alpha (PPAR-α) were identified by MS/MS among the proteins shown to vary the most; increased IL-17 elevated the transcription of SREBP-1c and ChREBP but suppressed ECHS1 and PPAR-α. The interleukin-17 signaling pathway is involved in ALD development; anti-IL-17 antibody improved hepatic steatosis by suppressing interleukin-17-related fatty acid metabolism.
PMCID: PMC3876773  PMID: 24396389
9.  Identification of polymorphisms in ultraconserved elements associated with clinical outcomes in locally advanced colorectal adenocarcinoma 
Cancer  2012;118(24):6188-6198.
Ultraconserved elements (UCEs) are non-coding genomic sequences completely identical among human, mouse, and rat species and harbor critical biological functions. We hypothesized that single nucleotide polymorphisms (SNPs) within UCEs are associated with clinical outcomes in colorectal cancer (CRC) patients.
Patients and Methods
Forty-eight SNPs within UCEs were genotyped in 662 patients with stage I–III CRC. The associations between genotypes and recurrence and survival were analyzed in stage II or III patients receiving fluoropyrimidine-based adjuvant chemotherapy using a training and validation design. The training set contained 115 stage II and 170 stage III patients, and the validation set contained 88 stage II and 112 stage III patients, respectively.
Eight SNPs were associated with clinical outcomes stratified by disease stage. In particular, for stage II patients with at least one variant allele of rs7849, consistent association with increased recurrence risk was observed in the training set (HR: 2.39; 95%CI: 1.04–5.52), replication set (HR: 3.70; 95%CI: 1.42–9.64), and meta-analysis (HR: 2.89; 95%CI: 1.54–5.41). There were several other SNPs that were significant in training set, but not in the validation set. These include: rs2421099, rs16983007 and rs10211390 with recurrence, and rs6590611 with survival in stage II patients; and SNPs rs6124509 and rs11195893 with recurrence in stage III patients. In addition, we also observed significant cumulative effect of multiple risk genotypes and potential gene-gene interactions on recurrence risk.
This is the first study to evaluate the association between SNPs within UCEs and clinical outcome in CRC patients. Our results suggest that SNPs within UCEs may be valuable prognostic biomarkers for locally advanced CRC patients receiving 5FU-based chemotherapy.
PMCID: PMC3465518  PMID: 22673945
SNP; ultraconserved elements; colorectal cancer; recurrence
10.  Inhibitory effects of osteoprotegerin on osteoclast formation and function under serum-free conditions 
Journal of Veterinary Science  2013;14(4):405-412.
The purpose of this study was to determine whether osteoprotegerin (OPG) could affect osteoclat differentiation and activation under serum-free conditions. Both duck embryo bone marrow cells and RAW264.7 cells were incubated with macrophage colony stimulatory factor (M-CSF) and receptor activator for nuclear factor κB ligand (RANKL) in serum-free medium to promote osteoclastogenesis. During cultivation, 0, 10, 20, 50, and 100 ng/mL OPG were added to various groups of cells. Osteoclast differentiation and activation were monitored via tartrate-resistant acid phosphatase (TRAP) staining, filamentous-actin rings analysis, and a bone resorption assay. Furthermore, the expression osteoclast-related genes, such as TRAP and receptor activator for nuclear factor κB (RANK), that was influenced by OPG in RAW264.7 cells was examined using real-time polymerase chain reaction. In summary, findings from the present study suggested that M-CSF with RANKL can promote osteoclast differentiation and activation, and enhance the expression of TRAP and RANK mRNA in osteoclasts. In contrast, OPG inhibited these activities under serum-free conditions.
PMCID: PMC3885733  PMID: 23820214
activation; differentiation; osteoclast; osteoprotegerin; serum-free
11.  Association of Aurora-A (STK15) Kinase Polymorphisms With Clinical Outcome of Esophageal Cancer Treated With Preoperative Chemoradiation 
Cancer  2011;118(17):10.1002/cncr.26581.
Aurora-A/STK15 is a serine/threonine kinase critical for regulated chromosome segregation and cytokinesis. We investigated the association between 2 nonsynonymous single nucleotide polymorphisms in the coding region of STK15, T91A (Phe31Ile) and G169A (Val57Ile), and clinical outcome of esophageal cancer treated with preoperative chemoradiation.
Genotypes at Phe31Ile and Val57Ile were assessed from peripheral blood lymphocytes of 190 esophageal cancer patients and were correlated to response to treatment, recurrence rate, risk of death, disease-free survival (DFS) and median survival time (MTS).
All patients had resectable esophageal or gastroesophageal junction cancer and received preoperative chemoradiation followed by esophagectomy. The heterozygous variant Phe31/Ile variant was significantly associated with tumor recurrence (odds ratio [OR] = 4.39; 95% confidence interval [CI], 2.12-8.94; P < .001), shorter DFS (P = .0001), and shorter MTS (P = .012). For patients receiving cisplatin-based therapy, only the variant Phe31/Ile had an adverse effect on response (OR = 2.8; 95% CI, 1.01-5.17; P = .048) and MTS (P = .026). The variant 91A-169G haplotype carried a significant risk for lack of complete response (OR = 2.54; 95% CI, 1.15-5.54) and higher rate of recurrence (OR = 2.73; 95%CI, 1.00-7.29). The presence of at least 1 variant allele at each locus further increased the risk of recurrence (adjusted OR = 6.21; 95% CI, 2.28-17.11; P = <.001), and was associated significantly shorter DFS (P = .003).
Our study shows that functional SNPs in the STK15 gene are associated with higher rate of recurrence, higher likelihood of chemoratiotherapy-resistance, shorter DFS, and shorter MTS. Confirmation of our data and understanding the mechanisms through which STK15 functional SNPs mediate resistance to chemoradiotherapy are warranted.
PMCID: PMC3831524  PMID: 22213102
Aurora-A; polymorphism; chemoradiotherapy; esophageal cancer; outcome
12.  Germline Prognostic Markers for Urinary Bladder Cancer: Obstacles and Opportunities 
Urologic oncology  2012;30(4):10.1016/j.urolonc.2012.04.003.
Urinary bladder cancer is a heterogeneous disease with diverse genetic and environmental risk factors that can influence disease risk or clinical course for recurrence, progression, and survival. Therefore, identification of these factors is paramount for disease prevention and optimal clinical management of bladder cancer patients. Of particular interest is the need to identify molecular biomarkers that can give accurate assessment of tumor biological potential and to predict treatment response. Recent advances in molecular biology, cytogenetic and genomic research have spurred discovery efforts for novel genetic, epigenetic, and proteomic biomarkers that are prognostic for cancer. This review focuses on some of the important germline polymorphisms found to be correlated with clinical outcomes in bladder cancer. So far the majority of the identified candidate loci was based on prior knowledge of pathogenesis and had not been validated for clinical applications. The future challenges are to analyze the wealth of information from whole-genome studies, to understand the underlying biological mechanisms of these associations, the network of gene-gene and gene-environment interactions, and to apply these markers for the identification of high-risk population for targeted, personalized therapy.
PMCID: PMC3824379  PMID: 22742565
Polymorphisms; prognostic markers; clinical outcome; bladder cancer
13.  The Complete Exosome Workflow Solution: From Isolation to Characterization of RNA Cargo 
BioMed Research International  2013;2013:253957.
Exosomes are small (30–150 nm) vesicles containing unique RNA and protein cargo, secreted by all cell types in culture. They are also found in abundance in body fluids including blood, saliva, and urine. At the moment, the mechanism of exosome formation, the makeup of the cargo, biological pathways, and resulting functions are incompletely understood. One of their most intriguing roles is intercellular communication—exosomes function as the messengers, delivering various effector or signaling macromolecules between specific cells. There is an exponentially growing need to dissect structure and the function of exosomes and utilize them for development of minimally invasive diagnostics and therapeutics. Critical to further our understanding of exosomes is the development of reagents, tools, and protocols for their isolation, characterization, and analysis of their RNA and protein contents. Here we describe a complete exosome workflow solution, starting from fast and efficient extraction of exosomes from cell culture media and serum to isolation of RNA followed by characterization of exosomal RNA content using qRT-PCR and next-generation sequencing techniques. Effectiveness of this workflow is exemplified by analysis of the RNA content of exosomes derived from HeLa cell culture media and human serum, using Ion Torrent PGM as a sequencing platform.
PMCID: PMC3800616  PMID: 24205503
14.  Systematic evaluation of apoptotic pathway gene polymorphisms and lung cancer risk 
Carcinogenesis  2012;33(9):1699-1706.
We adopted a two-stage study design to screen 927 single nucleotide polymorphisms (SNPs) located in 73 apoptotic-pathway genes in a case-control study and then performed a fast-track validation of the significant SNPs in a replication population to identify sequence variations in the apoptotic pathway modulating lung cancer risk. Fifty-five SNPs showed significant associations in the discovery population comprised of 661 lung cancer cases and 959 controls. Six of these SNPs located in three genes (Bcl-2, CASP9 and ANKS1B) were validated in a replication population with 1154 cases and 1373 controls. Additive model was the best-fitting model for five SNPs (rs1462129 and rs255102 of Bcl-2, rs6685648 of CASP9 and rs1549102, rs11110099 of ANKS1B) and recessive model was the best fit for one SNP (rs10745877 of ANKS1B). In the analysis of joint effects with subjects carrying no unfavorable genotypes as the reference group, those carrying one, two, and three or more unfavorable genotypes had an odds ratio (OR) of 2.22 [95% confidence interval (CI) = 1.08–4.57, P = 0.03], 2.70 (95% CI = 1.33–5.49; P = 0.006) and 4.13 (95% CI = 2.00–8.57; P = 0.0001), respectively (P for trend = 6.05E-06). The joint effect of unfavorable genotypes was also validated in the replication population. The SNPs identified are located in or near key genes known to play important roles in apoptosis regulation, supporting the strong biological relevance of our findings. Future studies are needed to identify the causal SNPs and elucidate the underlying molecular mechanisms.
PMCID: PMC3514904  PMID: 22665367
15.  Curcumin induces apoptosis in gallbladder carcinoma cell line GBC-SD cells 
Gallbladder carcinoma is a malignant tumor with a very low 5-year survival rate because of the difficulty with its early diagnosis and the very poor prognosis of the advanced cancer state. The aims of this study were to determine whether curcumin could induce the apoptosis of a gallbladder carcinoma cell line, GBC-SD, and to clarify its related mechanism.
First, the anti-proliferative activities of curcumin-treated and untreated GBC-SD cells were determined using the MTT and colony formation assays. Then, the early apoptosis of cells was detected by the annexin V/propidium iodide double-staining assay and Hoechst 33342 staining assay. Detection of mitochondrial membrane potential was used to validate the ability of curcumin on inducing apoptosis in GBC-SD cells. Cell cycle changes were detected by flow cytometric analysis. Finally, the expressions of the apoptosis-related proteins or genes caspase-3, PARP, Bcl-2, and Bax were analyzed by western blot and quantitative real time PCR assay. Statistical analyses were performed using the Student’s t-test for comparison of the results obtained from cells with or without curcumin treatment.
The MTT assay revealed that curcumin had induced a dose- and a time-dependent decrease in cell viability. Colony counting indicated that curcumin had induced a dose-dependent decrease in the colony formation ability in GBC-SD cells. Cells treated with curcumin were arrested at the S phase, according to the flow cytometric analysis. A significant induction of both the early and late phases of apoptosis was shown by the annexin V-FITC and PI staining. Morphological changes in apoptotic cells were also found by the Hoechst 33342 staining. After treatment with curcumin fluorescence shifted from red to green as ΔΨm decreased. Furthermore, western blot and quantitative real time PCR assays demonstrated that the curcumin induced apoptosis in GBC-SD cells by regulating the ratio of Bcl-2/Bax and activating the expression of cleaved caspase-3.
Taken together, the results indicate that curcumin may be a potential agent for the treatment of gallbladder cancer.
PMCID: PMC3733655  PMID: 23802572
Curcumin; Gallbladder carcinoma GBC-SD cell; Proliferation; Apoptosis
16.  Cadmium-Induced Apoptosis in Primary Rat Cerebral Cortical Neurons Culture Is Mediated by a Calcium Signaling Pathway 
PLoS ONE  2013;8(5):e64330.
Cadmium (Cd) is an extremely toxic metal, capable of severely damaging several organs, including the brain. Studies have shown that Cd disrupts intracellular free calcium ([Ca2+]i) homeostasis, leading to apoptosis in a variety of cells including primary murine neurons. Calcium is a ubiquitous intracellular ion which acts as a signaling mediator in numerous cellular processes including cell proliferation, differentiation, and survival/death. However, little is known about the role of calcium signaling in Cd-induced apoptosis in neuronal cells. Thus we investigated the role of calcium signaling in Cd-induced apoptosis in primary rat cerebral cortical neurons. Consistent with known toxic properties of Cd, exposure of cerebral cortical neurons to Cd caused morphological changes indicative of apoptosis and cell death. It also induced elevation of [Ca2+]i and inhibition of Na+/K+-ATPase and Ca2+/Mg2+-ATPase activities. This Cd-induced elevation of [Ca2+]i was suppressed by an IP3R inhibitor, 2-APB, suggesting that ER-regulated Ca2+ is involved. In addition, we observed elevation of reactive oxygen species (ROS) levels, dysfunction of cytochrome oxidase subunits (COX-I/II/III), depletion of mitochondrial membrane potential (ΔΨm), and cleavage of caspase-9, caspase-3 and poly (ADP-ribose) polymerase (PARP) during Cd exposure. Z-VAD-fmk, a pan caspase inhibitor, partially prevented Cd-induced apoptosis and cell death. Interestingly, apoptosis, cell death and these cellular events induced by Cd were blocked by BAPTA-AM, a specific intracellular Ca2+ chelator. Furthermore, western blot analysis revealed an up-regulated expression of Bcl-2 and down-regulated expression of Bax. However, these were not blocked by BAPTA-AM. Thus Cd toxicity is in part due to its disruption of intracellular Ca2+ homeostasis, by compromising ATPases activities and ER-regulated Ca2+, and this elevation in Ca2+ triggers the activation of the Ca2+-mitochondria apoptotic signaling pathway. This study clarifies the signaling events underlying Cd neurotoxicity, and suggests that regulation of Cd-disrupted [Ca2+]i homeostasis may be a new strategy for prevention of Cd-induced neurodegenerative diseases.
PMCID: PMC3669330  PMID: 23741317
17.  EGCG, a major green tea catechin suppresses breast tumor angiogenesis and growth via inhibiting the activation of HIF-1α and NFκB, and VEGF expression 
Vascular Cell  2013;5:9.
The role of EGCG, a major green tea catechin in breast cancer therapy is poorly understood. The present study tests the hypothesis that EGCG can inhibit the activation of HIF-1α and NFκB, and VEGF expression, thereby suppressing tumor angiogenesis and breast cancer progression. Sixteen eight-wk-old female mice (C57BL/6 J) were inoculated with 10^6 E0771 (mouse breast cancer) cells in the left fourth mammary gland fat pad. Eight mice received EGCG at 50–100 mg/kg/d in drinking water for 4 weeks. 8 control mice received drinking water only. Tumor size was monitored using dial calipers. At the end of the experiment, blood samples, tumors, heart and limb muscles were collected for measuring VEGF expression using ELISA and capillary density (CD) using CD31 immunohistochemistry. EGCG treatment significantly reduced tumor weight over the control (0.37 ± 0.15 vs. 1.16 ± 0.30 g; P < 0.01), tumor CD (109 ± 20 vs. 156 ± 12 capillary #/mm^2; P < 0.01), tumor VEGF expression (45.72 ± 1.4 vs. 59.03 ± 3.8 pg/mg; P < 0.01), respectively. But, it has no effects on the body weight, heart weight, angiogenesis and VEGF expression in the heart and skeletal muscle of mice. EGCG at 50 μg/ml significantly inhibited the activation of HIF-1α and NFκB as well as VEGF expression in cultured E0771 cells, compared to the control, respectively. These findings support the hypothesis that EGCG, a major green tea catechin, directly targets both tumor cells and tumor vasculature, thereby inhibiting tumor growth, proliferation, migration, and angiogenesis of breast cancer, which is mediated by the inhibition of HIF-1α and NFκB activation as well as VEGF expression.
PMCID: PMC3649947  PMID: 23638734
18.  Improvements to RiboMinus™ Eukaryote rRNA Depletion Probe Design and Functionality to Enable a Faster and More Complete Workflow 
Cellular RNA is composed mainly of cytoplasmic and mitochondrial ribosomal RNA (rRNA). Since rRNAs are not usually the target of whole transcriptome RNA-Seq studies and can potentially take up a majority of valuable sequencing reads, fractionation of the total RNA to obtain rRNA depleted RNA is a necessary first step. The current RiboMinus™ design has had limited success with partially degraded total RNA, due to an abundance of fragmented rRNA contamination in compromised RNA that the current design of probes do not address. We have made improvements to the design and functionality of the RiboMinus™ Eukaryote Kit for RNA-Seq and have expanded its utility to include rRNA depletion from partially degraded total RNA samples. Improvements include: 1. increased the number of rRNA probes; 2. expanded the probe design to include mitochondrial as well as cytoplasmic rRNA; 3. optimized the streptavidin-biotin hybridization time to bring the overall workflow time to about one hour; 4. developed a bead based concentration step enabling scalability of the protocol to multiple samples. These improvements enable the new RiboMinus™ Eukaryote System v2 to be a competitive option for rRNA depletion upstream of Ion Total RNA-Seq Kit v2 library preparation while preserving the whole transcriptome population including RNA transcripts less than 200 nt in length. This workflow enables discovery of new transcripts and accurate gene expression profiling of biologically relevant RNA species beyond those of polyadenylated mRNA.
PMCID: PMC3635353
19.  Genetic variants within ultraconserved elements and susceptibility to right- and left-sided colorectal adenocarcinoma 
Carcinogenesis  2012;33(4):841-847.
We investigated whether single nucleotide polymorphisms within ultraconserved elements (UCEs) are associated with susceptibility to overall colorectal cancer (CRC) and susceptibility to tumor site-specific CRC. The study included 787 CRC patients and 551 healthy controls. The study comprised of a training set (520 cases and 341 controls) and a replication set (267 cases and 210 controls). We observed associations in rs7849 and rs1399685 with CRC risk. For example, a dose-dependent trend (per-allele odds ratio (OR), 0.78; 95% confidence interval (CI), 0.63–1.00; P for trend = 0.05) associated with the variant allele of rs7849 in the training set. The significant trend toward a decrease in CRC risk was confirmed in the replication set (per-allele OR, 0.72; 95% CI, 0.52–0.99; P for trend = 0.044). When stratified by tumor location, for left-sided CRC (LCRC) risk, significant association was observed for the variant-containing genotypes of rs1399685 (OR, 1.77; 95% CI, 1.02–3.06) and the risk was replicated in the replication population (OR, 2.04; 95% CI, 1.02–4.07). The variant genotypes of rs9784100 and rs7849 conferred decreased risk but the associations were not replicated. Three right-sided CRC (RCRC) susceptibility loci were identified in rs6124509, rs4243289 and rs12218935 but none of the loci was replicated. Joint effects and potential higher order gene–gene interactions among significant variants further categorized patients into different risk groups. Our results strongly suggest that several genetic variants in the UCEs may contribute to CRC susceptibility, individually and jointly, and that different genetic etiology may be involved in RCRC and LCRC.
PMCID: PMC3324446  PMID: 22318908
20.  Comprehensive pathway-based interrogation of genetic variations in the nucleotide excision DNA repair pathway and risk of bladder cancer 
Cancer  2011;118(1):205-215.
Growing evidence suggests that single nucleotide polymorphisms (SNPs) in nucleotide excision repair (NER) pathway genes play an important role in bladder cancer etiology. However, only a limited number of genes and variations in this pathway have been evaluated to date.
In this study, we applied a comprehensive pathway-based approach to assess the effects of 207 tagging and potentially functional SNPs in 26 NER genes on bladder cancer risk using a large case-control study consisting of 803 bladder cancer cases and 803 controls.
A total of 17 SNPs were significantly associated with altered bladder cancer risk at P<0.05, of which 7 SNPs retained noteworthiness after assessed by a Bayesian approach for the probability of false discovery. The most noteworthy SNP was rs11132186 in ING2 gene. Compared to the major allele-containing genotypes, the odds ratio (OR) was 0.52 (95% confidence interval [CI] 0.32–0.83, P = 0.005) for the homozygous variant genotype. Three additional ING2 variants also exhibited significant associations with bladder cancer risk. Significant gene-smoking interactions were observed for three of the top 17 SNPs. Furthermore, through an exploratory classification and regression tree (CART) analysis, we identified potential gene-gene interactions.
We conducted a large association study of NER pathway with bladder cancer risk and identified several novel predisposition variants. We identified potential gene-gene and gene-environment interactions in modulating bladder cancer risk. Our results reinforce the importance of a comprehensive pathway-focused and tagging SNP-based candidate gene approach to identify low-penetrance cancer susceptibility loci.
PMCID: PMC3178723  PMID: 21692063
bladder cancer; genetic susceptibility; nucleotide excision repair; SNP; gene-smoking interaction
21.  Electroacupuncture alleviates stress-induced visceral hypersensitivity through an opioid system in rats 
AIM: To investigate whether stress-induced visceral hypersensitivity could be alleviated by electroacupuncture (EA) and whether EA effect was mediated by endogenous opiates.
METHODS: Six to nine week-old male Sprague-Dawley rats were used in this study. Visceral hypersensitivity was induced by a 9-d heterotypic intermittent stress (HIS) protocol composed of 3 randomly stressors, which included cold restraint stress at 4 °C for 45 min, water avoidance stress for 60 min, and forced swimming stress for 20 min, in adult male rats. The extent of visceral hypersensitivity was quantified by electromyography or by abdominal withdrawal reflex (AWR) scores of colorectal distension at different distention pressures (20 mmHg, 40 mmHg, 60 mmHg and 80 mmHg). AWR scores either 0, 1, 2, 3 or 4 were obtained by a blinded observer. EA or sham EA was performed at classical acupoint ST-36 (Zu-San-Li) or BL-43 (Gao-Huang) in both hindlimbs of rats for 30 min. Naloxone (NLX) or NLX methiodide (m-NLX) was administered intraperitoneally to HIS rats in some experiments.
RESULTS: HIS rats displayed an increased sensitivity to colorectal distention, which started from 6 h (the first measurement), maintained for 24 h, and AWR scores returned to basal levels at 48 h and 7 d after HIS compared to pre-HIS baseline at different distention pressures. The AWR scores before HIS were 0.6 ± 0.2, 1.3 ± 0.2, 1.9 ± 0.2 and 2.3 ± 0.2 for 20 mmHg, 40 mmHg, 60 mmHg and 80 mmHg distention pressures, respectively. Six hours after termination of the last stressor, the AWR scores were 2.0 ± 0.1, 2.5 ± 0.1, 2.8 ± 0.2 and 3.5 ± 0.2 for 20 mmHg, 40 mmHg, 60 mmHg and 80 mmHg distention pressures, respectively. EA given at classical acupoint ST-36 in both hindlimbs for 30 min significantly attenuated the hypersensitive responses to colorectal distention in HIS rats compared with sham EA treatment [AWRs at 20 mmHg: 2.0 ± 0.2 vs 0.7 ± 0.1, P = 4.23 711 E-4; AWRs at 40 mmHg: 2.6 ± 0.2 vs 1.5 ± 0.2, P = 0.00 163; AWRs at 60 mmHg: 3.1 ± 0.2 vs 1.9 ± 0.1, P = 0.003; AWRs at 80 mmHg: 3.6 ± 0.1 vs 2.4 ± 0.2, P = 0.0023; electromyographic (EMG) at 20 mmHg: 24 ± 4.7 vs 13.8 ± 3.5; EMG at 40 mmHg: 60.2 ± 6.6 vs 30 ± 4.9, P = 0.00 523; EMG at 60 mmHg: 83 ± 10 vs 39.8 ± 5.9, P = 0.00 029; EMG at 80 mmHg: 94.3 ± 10.8 vs 49.6 ± 5.9, P = 0.00 021]. In addition, EA at the acupuncture point BL-43 with same parameters did not alleviate visceral hypersensitivity in HIS rats. EA in healthy rats also did not have any effect on AWR scores to colorectal distention at distention pressures of 20 and 40 mmHg. The EA-mediated analgesic effect was blocked by pretreatment with NLX in HIS rats [AWR scores pretreated with NLX vs normal saline (NS) were 2.0 vs 0.70 ± 0.20, 2.80 ± 0.12 vs 1.50 ± 0.27, 3 vs 2.00 ± 0.15 and 3.60 ± 0.18 vs 2.60 ± 0.18 for 20 mmHg, 40 mmHg, 60 mmHg and 80 mmHg; P = 0.0087, 0.0104, 0.0117 and 0.0188 for 20, 40, 60 and 80 mmHg, respectively]. Furthermore, EA-mediated analgesic effect was completely reversed by administration of m-NLX, a peripherally restricted opioid antagonist (EMG pretreated with m-NLX vs NS were 30.84 ± 4.39 vs 13.33 ± 3.88, 74.16 ± 9.04 vs 36.28 ± 8.01, 96.45 ± 11.80 vs 50.19 ± 8.28, and 111.59 ± 13.79 vs 56.42 ± 8.43 for 20 mmHg, 40 mmHg, 60 mmHg and 80 mmHg; P = 0.05 026, 0.00 034, 0.00 005, 0.000 007 for 20 mmHg, 40 mmHg, 60 mmHg and 80 mmHg, respectively).
CONCLUSION: EA given at classical acupoint ST-36 alleviates stress-induced visceral pain, which is most likely mediated by opioid pathways in the periphery.
PMCID: PMC3544022  PMID: 23326125
Irritable bowel syndrome; Visceral pain; Electroacupuncture; Opioid pathway; Stress
22.  ABT-737 Induces Bim Expression via JNK Signaling Pathway and Its Effect on the Radiation Sensitivity of HeLa Cells 
PLoS ONE  2012;7(12):e52483.
ABT-737 is a BH3 mimetic small molecule inhibitor that can effectively inhibit the activity of antiapoptotic Bcl-2 family proteins including Bcl2, Bcl-xL and Bcl-w, and further enhances the effect of apoptosis by activating the proapoptotic proteins (t-Bid, Bad, Bim). In this study, we demonstrate that ABT-737 improved the radiation sensitivity of cervical cancer HeLa cells and thereby provoked cell apoptosis. Our results show that ABT-737 inhibited HeLa cell proliferation and activated JNK and its downstream target c-Jun, which caused the up-regulation of Bim expression. Blockade of JNK/c-Jun signaling pathway resulted in significant down-regulation of ABT-737-induced Bim mRNA and protein expression level. Also, ABT-737 could evoke the Bim promoter activity, and enhance the radiation sensitivity of HeLa cells via JNK/c-Jun and Bim signaling pathway. Our data imply that combination of ABT-737 and conventional radiation therapy might represent a highly effective therapeutic approach for future treatment of cervical cancer.
PMCID: PMC3527555  PMID: 23285061
23.  HSD3B and Gene-Gene Interactions in a Pathway-Based Analysis of Genetic Susceptibility to Bladder Cancer 
PLoS ONE  2012;7(12):e51301.
Bladder cancer is the 4th most common cancer among men in the U.S. We analyzed variant genotypes hypothesized to modify major biological processes involved in bladder carcinogenesis, including hormone regulation, apoptosis, DNA repair, immune surveillance, metabolism, proliferation, and telomere maintenance. Logistic regression was used to assess the relationship between genetic variation affecting these processes and susceptibility in 563 genotyped urothelial cell carcinoma cases and 863 controls enrolled in a case–control study of incident bladder cancer conducted in New Hampshire, U.S. We evaluated gene–gene interactions using Multifactor Dimensionality Reduction (MDR) and Statistical Epistasis Network analysis. The 3′UTR flanking variant form of the hormone regulation gene HSD3B2 was associated with increased bladder cancer risk in the New Hampshire population (adjusted OR 1.85 95%CI 1.31–2.62). This finding was successfully replicated in the Texas Bladder Cancer Study with 957 controls, 497 cases (adjusted OR 3.66 95%CI 1.06–12.63). The effect of this prevalent SNP was stronger among males (OR 2.13 95%CI 1.40–3.25) than females (OR 1.56 95%CI 0.83–2.95), (SNP-gender interaction P = 0.048). We also identified a SNP-SNP interaction between T-cell activation related genes GATA3 and CD81 (interaction P = 0.0003). The fact that bladder cancer incidence is 3–4 times higher in males suggests the involvement of hormone levels. This biologic process-based analysis suggests candidate susceptibility markers and supports the theory that disrupted hormone regulation plays a role in bladder carcinogenesis.
PMCID: PMC3526593  PMID: 23284679
24.  Common genetic variants in cell cycle pathway are associated with survival in stage III–IV non-small-cell lung cancer 
Carcinogenesis  2011;32(12):1867-1871.
Cell cycle progression contributes to the cellular response to DNA-damaging factors, such as chemotherapy and radiation. We hypothesized that the genetic variations in cell cycle pathway genes may modulate treatment responses and affect survival in patients with advanced non-small-cell lung cancer (NSCLC). We genotyped 374 single-nucleotide polymorphisms (SNPs) from 49 cell cycle-related genes in 598 patients with stages III–IV NSCLC treated with first-line platinum-based chemotherapy with/without radiation. We analyzed the individual and combined associations of these SNPs with survival and evaluated their gene–gene interactions using survival tree analysis. In the analysis of survival in all the patients, 39 SNPs reached nominal significance (P < 0.05) and 4 SNPs were significant at P <0.01. However, none of these SNPs remained significant after correction for multiple comparisons at a false discovery rate of 10%. In stratified analysis by treatment modality, after adjusting for multiple comparisons, nine SNPs in chemotherapy alone and one SNP in chemoradiation remained significant. The most significant SNP in chemotherapy group was CCNB2:rs1486878 [hazard ratio (HR) = 1.69, 95% confidence interval (CI), 1.25–2.30, P = 0.001]. TP73: rs3765701 was the only significant SNP in chemoradiation group (HR = 1.87; 95% CI = 1.35–2.59, P = 1.8 × 10−4). In cumulative analysis, we found a significant gene-dosage effect in patients receiving chemotherapy alone. Survival tree analysis demonstrated potential higher order gene–gene and gene–treatment interactions, which could be used to predict survival status based on distinct genetic signatures. These results suggest that genetic variations in cell cycle pathway genes may affect the survival of patients with stages III–IV NSCLC individually and jointly.
PMCID: PMC3220611  PMID: 21965272
25.  Novel GATA5 loss-of-function mutations underlie familial atrial fibrillation 
Clinics  2012;67(12):1393-1399.
This study aimed to identify novel GATA5 mutations that underlie familial atrial fibrillation.
A total of 110 unrelated patients with familial atrial fibrillation and 200 unrelated, ethnically matched healthy controls were recruited. The entire coding region of the GATA5 gene was sequenced in 110 atrial fibrillation probands. The available relatives of the mutation carriers and 200 controls were subsequently genotyped for the identified mutations. The functional effect of the mutated GATA5 was characterized using a luciferase reporter assay system.
Two novel heterozygous GATA5 mutations (p.Y138F and p.C210G) were identified in two of the 110 unrelated atrial fibrillation families. These missense mutations cosegregated with AF in the families and were absent in the 400 control chromosomes. A cross-species alignment of GATA5 protein sequence showed that the altered amino acids were completely conserved evolutionarily. A functional analysis revealed that the mutant GATA5 proteins were associated with significantly decreased transcriptional activation when compared with their wild-type counterpart.
The findings expand the spectrum of GATA5 mutations linked to AF and provide novel insights into the molecular mechanism involved in the pathogenesis of atrial fibrillation, suggesting potential implications for the early prophylaxis and personalized treatment of this common arrhythmia.
PMCID: PMC3521801  PMID: 23295592
Atrial Fibrillation; Transcriptional Factor; GATA5; Genetics; Reporter Gene

Results 1-25 (88)