PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
author:("nance, khaya")
1.  A latest and promising approach for prediction of viral load in hepatitis B virus infected patients 
INTRODUCTION:
Designing a rapid, reliable and sensitive assay for detection of hepatitis B virus (HBV) variants by real-time PCR is challenging at best. A recent approach for quantifying the viral load using a sensitive fluorescent principle was brushed in this study.
MATERIALS AND METHODS
: A total of 250 samples were collected from the outpatient unit, CLRD. Complete Human HBVDNA sequences (n = 944) were selected from the National Centre for Biotechnology Information (NCBI), primers and probes were designed and synthesized from the core, surface, and x region. Real-time based quantification was carried out using a standard kit and in-house generated standards and RT-PCR protocols.
RESULTS AND DISCUSSION:
The standard calibration curve was generated by using serial dilution 102 to 108. The calibration curve was linear in a range from 102 to 108 copies/ml, with an R2 value of 0.999. Reproducibility as measured by dual testing of triplicates of serum samples was acceptable, with coefficients of variation at 6.5%, 7.5%, and 10.5%. Our results showed that amplification performance was good in the case of the x-region-based design (98%). Out of 100 negative samples screened by enzyme linked immunosorbent assay and the standard RT-PCR kit, one sample was detected as positive with the in-house developed RT-PCR assay, the positivity of the sample was confirmed by sequencing the amplified product, NCBI accession EU684022.
CONCLUSION:
This assay is reproducible showing limited inter- and intra-assay variability. We demonstrate that the results of our assay correlated well with the standard kit for the HBV viral load monitor.
doi:10.4103/0971-6866.83170
PMCID: PMC3144682  PMID: 21814338
Hepatitis B virus; quantification; real-time Polymerase Chain Reaction; TaqMan chemistry 19p 13.3; genetic markers
2.  A Shared Y-chromosomal Heritage between Muslims and Hindus in India 
Human genetics  2006;120(4):543-551.
Arab forces conquered the Indus Delta region in 711 A.D. and, although a Muslim state was established there, their influence was barely felt in the rest of South Asia at that time. By the end of the tenth century, Central Asian Muslims moved into India from the northwest and expanded throughout the subcontinent. Muslim communities are now the largest minority religion in India, comprising more than 138 million people in a predominantly Hindu population of over one billion. It is unclear whether the Muslim expansion in India was a purely cultural phenomenon or had a genetic impact on the local population. To address this question from a male perspective, we typed eight microsatellite loci and 16 binary markers from the Y chromosome in 246 Muslims from Andhra Pradesh, and compared them to published data on 4,204 males from China, Central Asia, other parts of India, Sri Lanka, Pakistan, Iran, the Middle East, Turkey, Egypt and Morocco. We find that the Muslim populations in general are genetically closer to their non-Muslim geographical neighbors than to other Muslims in India, and that there is a highly significant correlation between genetics and geography (but not religion). Our findings indicate that, despite the documented practice of marriage between Muslim men and Hindu women, Islamization in India did not involve large-scale replacement of Hindu Y chromosomes. The Muslim expansion in India was predominantly a cultural change and was not accompanied by significant gene flow, as seen in other places, such as China and Central Asia.
doi:10.1007/s00439-006-0234-x
PMCID: PMC2590854  PMID: 16951948
Y-chromosomal polymorphism; India; Muslim; Hindu

Results 1-2 (2)