PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Phylogenetic nomenclature and evolution of mannose-binding lectin (MBL2) haplotypes 
BMC Genetics  2010;11:38.
Background
Polymorphisms of the mannose-binding lectin gene (MBL2) affect the concentration and functional efficiency of the protein. We recently used haplotype-specific sequencing to identify 23 MBL2 haplotypes, associated with enhanced susceptibility to several diseases.
Results
In this work, we applied the same method in 288 and 470 chromosomes from Gabonese and European adults, respectively, and found three new haplotypes in the last group. We propose a phylogenetic nomenclature to standardize MBL2 studies and found two major phylogenetic branches due to six strongly linked polymorphisms associated with high MBL production. They presented high Fst values and were imbedded in regions with high nucleotide diversity and significant Tajima's D values. Compared to others using small sample sizes and unphased genotypic data, we found differences in haplotyping, frequency estimation, Fu and Li's D* and Fst results.
Conclusion
Using extensive testing for selective neutrality, we confirmed that stochastic evolutionary factors have had a major role in shaping this polymorphic gene worldwide.
doi:10.1186/1471-2156-11-38
PMCID: PMC2885306  PMID: 20465856
2.  Haplotype specific-sequencing reveals MBL2 association with asymptomatic Plasmodium falciparum infection 
Malaria Journal  2009;8:97.
Background
Mannose binding lectin (MBL) has an important role in the activation of the complement system and opsonization of pathogenic microorganisms. Frequent polymorphisms found in the MBL2 gene affect the concentration and functionality of the protein and are associated with enhanced susceptibility to severe malaria in African children. Most MBL2 typing strategies were designed to the analysis of selected variants, the significance of whole haplotypes is poorly known. In this work, a new typing strategy was developed and validated in an association analysis of MBL2 with adult asymptomatic infection.
Methods
MBL2 allele-specific fragments of 144 healthy Gabonese adults were amplified by using haplotype-specific sequencing (HSS), a new strategy that combines sequence-specific PCR and sequence-based typing. The Gabonese were investigated for the presence of Plasmodium falciparum parasitaemia by the amplification of parasite genes, immunochromatographic antigen detection and microscopic analysis. HSS results were also compared with a previously used real-time PCR (RT-PCR) method in 72 Euro-Brazilians.
Results
Fourteen polymorphisms were identified beside the commonly investigated promoter (H, L; X, Y; P, Q) and exon 1 (A, O; O = B, C or D) variants. The MBL2*LYPA/LYPA genotype was associated with the absence of asymptomatic infection (P = 0.017), whereas the MBL2*LYQC haplotype and YA/YO + YO/YO genotypes were associated with positive parasite counts in asymptomatic adults (P = 0.033 and 0.018, respectively). The associations were specific to LYPA (identical to the reference sequence Y16577) and LYQC (Y16578) and would not have been revealed by standard genotyping, as there was no association with LYPA and LYQC haplotypes carrying new polymorphisms defined by sequence-based typing. In contrast, HSS and RT-PCR produced very similar results in the less diverse European-derived population.
Conclusion
In this work, a new typing strategy for a highly polymorphic gene was developed and validated focusing on the asymptomatic status of P. falciparum-infected adults. In populations with high nucleotide diversity, it allowed for the identification of associations with fine-scaled haplotypes that would not have been found using common typing techniques. In this preliminary study, MBL2 haplotypes or SNPs linked to them were found associated with susceptibility to infection and parasitaemia control of asymptomatic adults.
doi:10.1186/1475-2875-8-97
PMCID: PMC2689254  PMID: 19432958
3.  Association of MASP-2 Levels and MASP2 Gene Polymorphisms with Rheumatoid Arthritis in Patients and Their Relatives 
PLoS ONE  2014;9(3):e90979.
Background
Mannan-binding lectin-associated serine protease 2 (MASP-2) is a key protein of the lectin pathway of complement. MASP-2 levels have been associated with different polymorphisms within MASP2 gene as well as with the risk for inflammatory disorders and infections. Despite its clinical importance, MASP-2 remains poorly investigated in rheumatoid arthritis (RA).
Methods
In this case-control study, we measured MASP-2 serum levels in 156 RA patients, 44 patient relatives, and 100 controls from Southern Brazil, associating the results with nine MASP2 polymorphisms in all patients, 111 relatives, and 230 controls genotyped with multiplex SSP-PCR.
Results
MASP-2 levels were lower in patients than in controls and relatives (medians 181 vs. 340 or 285 ng/ml, respectively, P<0.0001). Conversely, high MASP-2 levels were associated with lower susceptibility to RA and to articular symptoms independently of age, gender, ethnicity, smoking habit, anti-CCP and rheumatoid factor positivity (OR = 0.05 [95%CI = 0.019–0.13], P<0.0001 between patients and controls; OR = 0.12, [95%CI = 0.03–0.45], P = 0.002 between patients and relatives; OR = 0.06, [95%CI = 0.004–0.73], P = 0.03 between relatives with and without articular symptoms). MASP2 haplotypes *2A1 and *2B1-i were associated with increased susceptibility to RA (OR = 3.32 [95%CI = 1.48–7.45], P = 0.004). Deficiency-causing p.120G and p.439H substitutions were associated with five times increased susceptibility to articular symptoms in relatives (OR = 5.13 [95%CI = 1.36–20.84], P = 0.02). There was no association of MASP-2 levels or MASP2 polymorphisms with autoantibodies, Sjögren's syndrome, nodules and functional class.
Conclusions
In this study, we found the first evidence that MASP-2 deficiency might play an important role in the development of RA and articular symptoms among relatives of RA patients.
doi:10.1371/journal.pone.0090979
PMCID: PMC3954616  PMID: 24632598
4.  Association of L-Ficolin Levels and FCN2 Genotypes with Chronic Chagas Disease 
PLoS ONE  2013;8(4):e60237.
Background
L-ficolin (encoded by FCN2) binds to acetylated sugar moieties of many pathogens, including Trypanosoma cruzi, promoting their phagocytosis and lysis by the complement system.
Methods
We investigated L-ficolin levels in 160 T. cruzi infected patients with chronic Chagas disease and 71 healthy individuals, and FCN2 polymorphisms (−986 G>A, −602 G>A, and −4 A>G in the promoter and A258S in exon 8) in 243 patients, being 88 indeterminate (asymptomatic), 96 with cardiac, 23 with digestive and 33 with cardiodigestive manifestations (two were unspecified) and 305 controls (135 for A258S).
Results
Patients presented lower L-ficolin plasma levels than controls (p<0.0001). Among the different groups of cardiac commitment, individuals with moderate forms had higher L-ficolin levels than the severe forms (P = 0.039). Lower L-ficolin levels were found associated with the 258S variant in the patients (P = 0.034). We found less −4A/G heterozygotes in the cardiac patients, than in the controls (OR = 0.56 [95% CI = 0.33–0.94], P = 0.034). Heterozygote −4A/G genotypes with the 258S variant and 258SS homozygotes were nevertheless more frequent among cardiodigestive patients than in controls (OR = 14.1 [95% CI = 3.5–56.8], P = 0.0001) and in indeterminate patients (OR = 3.2 [95% CI = 1.1–9.4], P = 0.037). We also found an association of the allelic frequency of the 258S variant with cardiodigestive Chagas disease compared to controls (OR = 2.24 [95% CI = 1.1–4.5], P = 0.037). Thus, decreased patient levels of L-ficolin reflect not only protein consumption due to the disease process, but also the higher frequency of the 258S variant in patients with cardiodigestive symptoms.
Conclusion
The very first study on Brazilian cohort associates both L-ficolin plasma levels and FCN2 variants to Chagas disease and subsequent disease progression. The prognostic value of L-ficolin levels and the FCN2*A258S polymorphism should be further evaluated in other settings.
doi:10.1371/journal.pone.0060237
PMCID: PMC3617223  PMID: 23593180
5.  IL-4 Haplotype -590T, -34T and Intron-3 VNTR R2 Is Associated with Reduced Malaria Risk among Ancestral Indian Tribal Populations 
PLoS ONE  2012;7(10):e48136.
Background
Interleukin 4 (IL-4) is an anti-inflammatory cytokine, which regulates balance between TH1 and TH2 immune response, immunoglobulin class switching and humoral immunity. Polymorphisms in this gene have been reported to affect the risk of infectious and autoimmune diseases.
Methods
We have analyzed three regulatory IL-4 polymorphisms; -590C>T, -34C>T and 70 bp intron-3 VNTR, in 4216 individuals; including: (1) 430 ethnically matched case-control groups (173 severe malaria, 101 mild malaria and 156 asymptomatic); (2) 3452 individuals from 76 linguistically and geographically distinct endogamous populations of India, and (3) 334 individuals with different ancestry from outside India (84 Brazilian, 104 Syrian, and 146 Vietnamese).
Results
The -590T, -34T and intron-3 VNTR R2 alleles were found to be associated with reduced malaria risk (P<0.001 for -590C>T and -34C>T, and P = 0.003 for VNTR). These three alleles were in strong LD (r2>0.75) and the TTR2 (-590T, -34T and intron-3 VNTR R2) haplotype appeared to be a susceptibility factor for malaria (P = 0.009, OR = 0.552, 95% CI = 0.356 –0.854). Allele and genotype frequencies differ significantly between caste, nomadic, tribe and ancestral tribal populations (ATP). The distribution of protective haplotype TTR2 was found to be significant (χ23 = 182.95, p-value <0.001), which is highest in ATP (40.5%); intermediate in tribes (33%); and lowest in caste (17.8%) and nomadic (21.6%).
Conclusions
Our study suggests that the IL-4 polymorphisms regulate host susceptibility to malaria and disease progression. TTR2 haplotype, which gives protection against malaria, is high among ATPs. Since they inhabited in isolation and mainly practice hunter-gatherer lifestyles and exposed to various parasites, IL-4 TTR2 haplotype might be under positive selection.
doi:10.1371/journal.pone.0048136
PMCID: PMC3480467  PMID: 23110190

Results 1-5 (5)