PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-9 (9)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  ATOH7 mutations cause autosomal recessive persistent hyperplasia of the primary vitreous 
Human Molecular Genetics  2012;21(16):3681-3694.
The vertebrate basic helix–loop–helix (bHLH) transcription factor ATOH7 (Math5) is specifically expressed in the embryonic neural retina and is required for the genesis of retinal ganglion cells (RGCs) and optic nerves. In Atoh7 mutant mice, the absence of trophic factors secreted by RGCs prevents the development of the intrinsic retinal vasculature and the regression of fetal blood vessels, causing persistent hyperplasia of the primary vitreous (PHPV). We therefore screened patients with hereditary PHPV, as well as bilateral optic nerve aplasia (ONA) or hypoplasia (ONH), for mutations in ATOH7. We identified a homozygous ATOH7 mutation (N46H) in a large family with an autosomal recessive PHPV disease trait linked to 10q21, and a heterozygous variant (R65G, p.Arg65Gly) in one of five sporadic ONA patients. High-density single-nucleotide polymorphism analysis also revealed a CNTN4 duplication and an OTX2 deletion in the ONA cohort. Functional analysis of ATOH7 bHLH domain substitutions, by electrophoretic mobility shift and luciferase cotransfection assays, revealed that the N46H variant cannot bind DNA or activate transcription, consistent with structural modeling. The N46H variant also failed to rescue RGC development in mouse Atoh7−/− retinal explants. The R65G variant retains all of these activities, similar to wild-type human ATOH7. Our results strongly suggest that autosomal recessive persistent hyperplastic primary vitreous is caused by N46H and is etiologically related to nonsyndromic congenital retinal nonattachment. The R65G allele, however, cannot explain the ONA phenotype. Our study firmly establishes ATOH7 as a retinal disease gene and provides a functional basis to analyze new coding variants.
doi:10.1093/hmg/dds197
PMCID: PMC3406761  PMID: 22645276
2.  Contrasting signals of positive selection in genes involved in human skin-color variation from tests based on SNP scans and resequencing 
Background
Numerous genome-wide scans conducted by genotyping previously ascertained single-nucleotide polymorphisms (SNPs) have provided candidate signatures for positive selection in various regions of the human genome, including in genes involved in pigmentation traits. However, it is unclear how well the signatures discovered by such haplotype-based test statistics can be reproduced in tests based on full resequencing data. Four genes (oculocutaneous albinism II (OCA2), tyrosinase-related protein 1 (TYRP1), dopachrome tautomerase (DCT), and KIT ligand (KITLG)) implicated in human skin-color variation, have shown evidence for positive selection in Europeans and East Asians in previous SNP-scan data. In the current study, we resequenced 4.7 to 6.7 kb of DNA from each of these genes in Africans, Europeans, East Asians, and South Asians.
Results
Applying all commonly used neutrality-test statistics for allele frequency distribution to the newly generated sequence data provided conflicting results regarding evidence for positive selection. Previous haplotype-based findings could not be clearly confirmed. Although some tests were marginally significant for some populations and genes, none of them were significant after multiple-testing correction. Combined P values for each gene-population pair did not improve these results. Application of Approximate Bayesian Computation Markov chain Monte Carlo based to these sequence data using a simple forward simulator revealed broad posterior distributions of the selective parameters for all four genes, providing no support for positive selection. However, when we applied this approach to published sequence data on SLC45A2, another human pigmentation candidate gene, we could readily confirm evidence for positive selection, as previously detected with sequence-based and some haplotype-based tests.
Conclusions
Overall, our data indicate that even genes that are strong biological candidates for positive selection and show reproducible signatures of positive selection in SNP scans do not always show the same replicability of selection signals in other tests, which should be considered in future studies on detecting positive selection in genetic data.
doi:10.1186/2041-2223-2-24
PMCID: PMC3287149  PMID: 22133426
4.  Separating the post-Glacial coancestry of European and Asian Y chromosomes within haplogroup R1a 
Human Y-chromosome haplogroup structure is largely circumscribed by continental boundaries. One notable exception to this general pattern is the young haplogroup R1a that exhibits post-Glacial coalescent times and relates the paternal ancestry of more than 10% of men in a wide geographic area extending from South Asia to Central East Europe and South Siberia. Its origin and dispersal patterns are poorly understood as no marker has yet been described that would distinguish European R1a chromosomes from Asian. Here we present frequency and haplotype diversity estimates for more than 2000 R1a chromosomes assessed for several newly discovered SNP markers that introduce the onset of informative R1a subdivisions by geography. Marker M434 has a low frequency and a late origin in West Asia bearing witness to recent gene flow over the Arabian Sea. Conversely, marker M458 has a significant frequency in Europe, exceeding 30% in its core area in Eastern Europe and comprising up to 70% of all M17 chromosomes present there. The diversity and frequency profiles of M458 suggest its origin during the early Holocene and a subsequent expansion likely related to a number of prehistoric cultural developments in the region. Its primary frequency and diversity distribution correlates well with some of the major Central and East European river basins where settled farming was established before its spread further eastward. Importantly, the virtual absence of M458 chromosomes outside Europe speaks against substantial patrilineal gene flow from East Europe to Asia, including to India, at least since the mid-Holocene.
doi:10.1038/ejhg.2009.194
PMCID: PMC2987245  PMID: 19888303
Y chromosome; haplogroup R1a; human evolution; population genetics
5.  Mutations in a new photoreceptor-pineal gene on 17p cause Leber congenital amaurosis 
American journal of ophthalmology  2000;129(6):834-835.
Leber congenital amaurosis (LCA, MIM 204000) accounts for at least 5% of all inherited retinal disease1 and is the most severe inherited retinopathy with the earliest age of onset2. Individuals affected with LCA are diagnosed at birth or in the first few months of life with severely impaired vision or blindness, nystagmus and an abnormal or flat electroretinogram (ERG). Mutations in GUCY2D (ref. 3), RPE65 (ref. 4) and CRX (ref. 5) are known to cause LCA, but one study identified disease-causing GUCY2D mutations in only 8 of 15 families whose LCA locus maps to 17p13.1 (ref. 3), suggesting another LCA locus might be located on 17p13.1. Confirming this prediction, the LCA in one Pakistani family mapped to 17p13.1, between D17S849 and D17S960—a region that excludes GUCY2D. The LCA in this family has been designated LCA4 (ref. 6). We describe here a new photoreceptor/pineal-expressed gene, AIPL1 (encoding arylhydrocarbon interacting protein-like 1), that maps within the LCA4 candidate region and whose protein contains three tetratricopeptide (TPR) motifs, consistent with nuclear transport or chaperone activity. A homozygous nonsense mutation at codon 278 is present in all affected members of the original LCA4 family. AIPL1 mutations may cause approximately 20% of recessive LCA, as disease-causing mutations were identified in 3 of 14 LCA families not tested previously for linkage.
PMCID: PMC2796558  PMID: 10927016
6.  Global patterns of variation in allele and haplotype frequencies and linkage disequilibrium across the CYP2E1 gene 
The pharmacogenomics journal  2008;8(5):349-356.
Cytochrome P450 2E1, gene symbol CYP2E1, is one of a family of enzymes with a central role in activating and detoxifying xenobiotics and endogenous compounds. Genetic variation at this gene has been reported in different human populations, and some association studies have reported increased risk for cancers and other diseases. To the best of our knowledge, multi-SNP haplotypes and linkage disequilibrium (LD) have not been systematically studied for CYP2E1 in multiple populations. Haplotypes can greatly increase the power both to identify patterns of genetic variation relevant for gene expression as well as to detect disease-related susceptibility mutations. We present frequency and LD data and analyses for 11 polymorphisms and their haplotypes that we have studied on over 2,600 individuals from 50 human population samples representing the major geographical regions of the world. The diverse patterns of haplotype variation found in the different populations we have studied show that ethnicity may be an important variable helping to explain inconsistencies that have been reported by association studies. More studies clearly are needed of the variants we have studied, especially those in the 5′ region, such as the VNTR, as well as studies of additional polymorphisms known for this gene to establish evidence relating any systematic differences in gene expression that exist to the haplotypes at this gene.
doi:10.1038/tpj.2008.9
PMCID: PMC2782390  PMID: 18663376
CYP2E1; Cytochrome P450; SNP; haplotype; linkage disequilibrium; random genetic drift
7.  A common MYBPC3 (cardiac myosin binding protein C) variant associated with cardiomyopathies in South Asia 
Nature genetics  2009;41(2):187-191.
Heart failure is a leading cause of mortality in South Asians. However, its genetic etiology remains largely unknown1. Cardiomyopathies due to sarcomeric mutations are a major monogenic cause for heart failure (MIM600958). Here, we describe a deletion of 25 bp in the gene encoding cardiac myosin binding protein C (MYBPC3) that is associated with heritable cardiomyopathies and an increased risk of heart failure in Indian populations (initial study OR = 5.3 (95% CI = 2.3–13), P = 2 × 10−6; replication study OR = 8.59 (3.19–25.05), P = 3 × 10−8; combined OR = 6.99 (3.68–13.57), P = 4 × 10−11) and that disrupts cardiomyocyte structure in vitro. Its prevalence was found to be high (~4%) in populations of Indian subcontinental ancestry. The finding of a common risk factor implicated in South Asian subjects with cardiomyopathy will help in identifying and counseling individuals predisposed to cardiac diseases in this region.
doi:10.1038/ng.309
PMCID: PMC2697598  PMID: 19151713
8.  Mutations in a new photoreceptor-pineal gene on 17p cause Leber congenital amaurosis 
Nature genetics  2000;24(1):79-83.
Leber congenital amaurosis (LCA, MIM 204000) accounts for at least 5% of all inherited retinal disease1 and is the most severe inherited retinopathy with the earliest age of onset2. Individuals affected with LCA are diagnosed at birth or in the first few months of life with severely impaired vision or blindness, nystagmus and an abnormal or flat electroretinogram (ERG). Mutations in GUCY2D (ref. 3), RPE65 (ref. 4) and CRX (ref. 5) are known to cause LCA, but one study identified disease-causing GUCY2D mutations in only 8 of 15 families whose LCA locus maps to 17p13.1 (ref. 3), suggesting another LCA locus might be located on 17p13.1. Confirming this prediction, the LCA in one Pakistani family mapped to 17p13.1, between D17S849 and D17S960—a region that excludes GUCY2D. The LCA in this family has been designated LCA4 (ref. 6). We describe here a new photoreceptor/pineal-expressed gene, AIPL1 (encoding arylhydrocarbon interacting protein-like 1), that maps within the LCA4 candidate region and whose protein contains three tetratricopeptide (TPR) motifs, consistent with nuclear transport or chaperone activity.A homozygous nonsense mutation at codon 278 is present in all affected members of the original LCA4 family. AIPL1 mutations may cause approximately 20% of recessive LCA, as disease-causing mutations were identified in 3 of 14 LCA families not tested previously for linkage.
doi:10.1038/71732
PMCID: PMC2581448  PMID: 10615133
9.  Identification and characterisation of novel human Y-chromosomal microsatellites from sequence database information 
Nucleic Acids Research  2000;28(2):e8.
1.33 Mb of sequence from the human Y chromosome was searched for tri- to hexanucleotide microsatellites. Twenty loci containing a stretch of eight or more repeat units with complete repeat sequence homogeneity were found, 18 of which were novel. Six loci (one tri-, four tetra- and one pentanucleotide) were assembled into a single multiplex reaction and their degree of polymorphism was investigated in a sample of 278 males from Pakistan. Diversities of the individual loci ranged from 0.064 to 0.727 in Pakistan, while the haplotype diversity was 0.971. One population, the Hazara, showed particularly low diversity, with predominantly two haplotypes. As the sequence builds up in the databases, direct methods such as this will replace more biased and technically demanding indirect methods for the isolation of microsatellites.
PMCID: PMC102540  PMID: 10606676

Results 1-9 (9)