Search tips
Search criteria

Results 1-7 (7)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Dominant negative Ras attenuates pathological ventricular remodeling in pressure overload cardiac hypertrophy 
Biochimica et biophysica acta  2015;1853(11 0 0):2870-2884.
The importance of the oncogene Ras in cardiac hypertrophy is well appreciated. The hypertrophic effects of the constitutively active mutant Ras-Val12 are revealed by clinical syndromes due to the Ras mutations and experimental studies. We examined the possible anti-hypertrophic effect of Ras inhibition in vitro using rat neonatal cardiomyocytes (NRCM) and in vivo in the setting of pressure-overload left ventricular (LV) hypertrophy (POH) in rats. Ras functions were modulated via adenovirus directed gene transfer of active mutant Ras-Val12 or dominant negative mutant N17-DN-Ras (DN-Ras). Ras-Val12 expression in vitro activates NFAT resulting in pro-hypertrophic and cardio-toxic effects on NRCM beating and Z-line organization. In contrast, the DN-Ras was antihypertrophic on NRCM, inhibited NFAT and exerted cardio-protective effects attested by preserved NRCM beating and Z line structure. Additional experiments with silencing H-Ras gene strategy corroborated the antihypertrophic effects of siRNA-H-Ras on NRCM. In vivo, with the POH model, both Ras mutants were associated with similar hypertrophy two weeks after simultaneous induction of POH and Ras-mutant gene transfer. However, LV diameters were higher and LV fractional shortening lower in the Ras-Val12 group compared to control and DN-Ras. Moreover, DN-Ras reduced the cross-sectional area of cardiomyocytes in vivo, and decreased the expression of markers of pathologic cardiac hypertrophy. In isolated adult cardiomyocytes after 2 weeks of POH and Ras-mutant gene transfer, DN-Ras improved sarcomere shortening and calcium transients compared to Ras-Val12. Overall, DN-Ras promotes a more physiological form of hypertrophy, suggesting an interesting therapeutic target for pathological cardiac hypertrophy.
PMCID: PMC4715892  PMID: 26260012
heart failure; cardiac hypertrophy; ras oncogene; pathological hypertrophy; physiological hypertrophy; ras inhibition
2.  Myeloid dysregulation in a human induced pluripotent stem cell model of PTPN11-associated juvenile myelomonocytic leukemia 
Cell reports  2015;13(3):504-515.
Somatic PTPN11 mutations cause juvenile myelomonocytic leukemia (JMML). Germ-line PTPN11 defects cause Noonan syndrome (NS), and specific inherited mutations cause NS/JMML. Here, we report that hematopoietic cells differentiated from human induced pluripotent stem cells (hiPSCs) harboring NS/JMML-causing PTPN11 mutations recapitulated JMML features. hiPSC-derived NS/JMML myeloid cells exhibited increased signaling through STAT5 and up-regulation of miR-223 and miR-15a. Similarly, miR-223 and miR-15a were up-regulated in 11/19 JMML bone marrow mononuclear cells harboring PTPN11 mutations but not those without PTPN11 defects. Reducing miR-223’s function in NS/JMML hiPSCs normalized myelogenesis. Micro-RNA target gene expression levels were reduced in hiPSC-derived myeloid cells as well as in JMML cells with PTPN11 mutations. Thus, studying an inherited human cancer syndrome with hiPSCs illuminated early oncogenesis prior to the accumulation of secondary genomic alterations, enabling us to discover micro-RNA dysregulation, establishing a genotype-phenotype association for JMML and providing novel therapeutic targets.
Graphical abstract
PMCID: PMC4618050  PMID: 26456833
3.  RAF1 mutations in childhood-onset dilated cardiomyopathy 
Nature genetics  2014;46(6):635-639.
Dilated cardiomyopathy (DCM) is a highly heterogeneous trait with sarcomeric gene mutations predominating. The cause of a significant percentage of DCM remains unknown and no gene-specific therapy is available. Based on resequencing with 513 DCM cases and 1,150 matched controls from various ethnically distinct cohorts, we discovered rare, functional RAF1 mutations in three of them (South India, North India and Japan). The prevalence of RAF1 mutations was ~9% in childhood-onset DCM cases in those three cohorts. Biochemical studies showed that DCM-associated RAF1 mutants had altered kinase activity, resulting in largely unaltered ERK activation but AKT that was hyperactivated in a BRAF-dependent manner. Constitutive expression of these mutants in zebrafish embryos resulted in a heart failure phenotype with AKT hyperactivation that was rescued by rapamycin treatment. These findings provide new mechanistic insights and potential therapeutic targets for RAF1-associated DCM and further expand the clinical spectrum of RAF1-related human disorders.
PMCID: PMC4049514  PMID: 24777450
4.  A Novel Arginine to Tryptophan (R144W) Mutation in Troponin T (cTnT) Gene in an Indian Multigenerational Family with Dilated Cardiomyopathy (FDCM) 
PLoS ONE  2014;9(7):e101451.
Cardiomyopathy is a major cause of heart failure and sudden cardiac death; several mutations in sarcomeric protein genes have been associated with this disease. Our aim in the present study is to investigate the genetic variations in Troponin T (cTnT) gene and its association with dilated cardiomyopathy (DCM) in south-Indian patients. Analyses of all the exons and exon-intron boundaries of cTnT in 147 DCM and in 207 healthy controls had revealed a total of 15 SNPs and a 5 bp INDEL; of which, polymorphic SNPs were compared with the HapMap population data. Interestingly, a novel R144W mutation, that substitutes polar-neutral tryptophan for a highly conserved basic arginine in cTnT, altering the charge drastically, was identified in a DCM, with a family history of sudden-cardiac death (SCD). This mutation was found within the tropomyosin (TPM1) binding domain, and was evolutionarily conserved across species, therefore it is expected to have a significant impact on the structure and function of the protein. Family studies had revealed that the R144W is co-segregating with disease in the family as an autosomal dominant trait, but it was completely absent in 207 healthy controls and in 162 previously studied HCM patients. Further screening of the proband and three of his family members (positive for R144W mutant) with eight other genes β-MYH7, MYBPC3, TPM1, TNNI3, TTN, ACTC, MYL2 and MYL3, did not reveal any disease causing mutation, proposing the absence of compound heterozygosity. Therefore, we strongly suggest that the novel R144W unique/private mutant identified in this study is associated with FDCM. This is furthermore signifying the unique genetic architecture of Indian population.
PMCID: PMC4081629  PMID: 24992688
5.  Cyclosporine attenuates cardiomyocyte hypertrophy induced by RAF1 mutants in Noonan and LEOPARD syndromes 
RAS activation is implicated in physiologic and pathologic cardiac hypertrophy. Cross-talk between the Ras and calcineurin pathways, the latter also having been implicated in cardiac hypertrophy, has been suspected for pathologic hypertrophy. Our recent discovery that germ-line mutations in RAF1, which encodes a downstream RAS effector, cause Noonan and LEOPARD syndromes with a high prevalence of hypertrophic cardiomyopathy provided an opportunity to elaborate the role of RAF1 in cardiomyocyte biology. Here, we characterize the role of RAF1 signaling in cardiomyocyte hypertrophy with an aim of identifying potential therapeutic targets. We modeled hypertrophic cardiomyopathy by infecting neonatal and adult rat cardiomyocytes (NRCMs and ARCMs, respectively) with adenoviruses encoding wild-type RAF1 and three Noonan/LEOPARD syndrome-associated RAF1 mutants (S257L, D486N or L613V). These RAF1 proteins, except D486N, engendered cardiomyocyte hypertrophy. Surprisingly, these effects were independent and dependent of mitogen activated protein kinases in NRCMs and ARCMs, respectively. Inhibiting Mek1/2 in RAF1 overexpressing cells blocked hypertrophy in ARCMs but not in NRCMs. Further, we found that endogenous and heterologously expressed RAF1 complexed with calcineurin, and RAF1 mutants causing hypertrophy signaled via nuclear factor of activated T cells (Nfat) in both cell types. The involvement of calcineurin was also reflected by down regulation of Serca2a and dysregulation of calcium signaling in NRCMs. Furthermore, treatment with the calcineurin inhibitor cyclosporine blocked hypertrophy in NRCMs and ARCMs overexpressing RAF1. Thus, we have identified calcineurin as a novel interaction partner for RAF1 and established a mechanistic link and possible therapeutic target for pathological cardiomyocyte hypertrophy induced by mutant RAF1.
PMCID: PMC3103595  PMID: 21440552
RAF1; calcineurin; MEK1/2; ERK1/2; hypertrophic cardiomyopathy; Noonan/LEOPARD syndrome; cardiomyocyte hypertrophy
6.  Targeted Genome-Wide Enrichment of Functional Regions 
PLoS ONE  2010;5(6):e11138.
Only a small fraction of large genomes such as that of the human contains the functional regions such as the exons, promoters, and polyA sites. A platform technique for selective enrichment of functional genomic regions will enable several next-generation sequencing applications that include the discovery of causal mutations for disease and drug response. Here, we describe a powerful platform technique, termed “functional genomic fingerprinting” (FGF), for the multiplexed genomewide isolation and analysis of targeted regions such as the exome, promoterome, or exon splice enhancers. The technique employs a fixed part of a uniquely designed Fixed-Randomized primer, while the randomized part contains all the possible sequence permutations. The Fixed-Randomized primers bind with full sequence complementarity at multiple sites where the fixed sequence (such as the splice signals) occurs within the genome, and multiplex amplify many regions bounded by the fixed sequences (e.g., exons). Notably, validation of this technique using cardiac myosin binding protein-C (MYBPC3) gene as an example strongly supports the application and efficacy of this method. Further, assisted by genomewide computational analyses of such sequences, the FGF technique may provide a unique platform for high-throughput sample production and analysis of targeted genomic regions by the next-generation sequencing techniques, with powerful applications in discovering disease and drug response genes.
PMCID: PMC2886846  PMID: 20585402
7.  A common MYBPC3 (cardiac myosin binding protein C) variant associated with cardiomyopathies in South Asia 
Nature genetics  2009;41(2):187-191.
Heart failure is a leading cause of mortality in South Asians. However, its genetic etiology remains largely unknown1. Cardiomyopathies due to sarcomeric mutations are a major monogenic cause for heart failure (MIM600958). Here, we describe a deletion of 25 bp in the gene encoding cardiac myosin binding protein C (MYBPC3) that is associated with heritable cardiomyopathies and an increased risk of heart failure in Indian populations (initial study OR = 5.3 (95% CI = 2.3–13), P = 2 × 10−6; replication study OR = 8.59 (3.19–25.05), P = 3 × 10−8; combined OR = 6.99 (3.68–13.57), P = 4 × 10−11) and that disrupts cardiomyocyte structure in vitro. Its prevalence was found to be high (~4%) in populations of Indian subcontinental ancestry. The finding of a common risk factor implicated in South Asian subjects with cardiomyopathy will help in identifying and counseling individuals predisposed to cardiac diseases in this region.
PMCID: PMC2697598  PMID: 19151713

Results 1-7 (7)