PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-8 (8)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  A Linguistically Informed Autosomal STR Survey of Human Populations Residing in the Greater Himalayan Region 
PLoS ONE  2014;9(3):e91534.
The greater Himalayan region demarcates two of the most prominent linguistic phyla in Asia: Tibeto-Burman and Indo-European. Previous genetic surveys, mainly using Y-chromosome polymorphisms and/or mitochondrial DNA polymorphisms suggested a substantially reduced geneflow between populations belonging to these two phyla. These studies, however, have mainly focussed on populations residing far to the north and/or south of this mountain range, and have not been able to study geneflow patterns within the greater Himalayan region itself. We now report a detailed, linguistically informed, genetic survey of Tibeto-Burman and Indo-European speakers from the Himalayan countries Nepal and Bhutan based on autosomal microsatellite markers and compare these populations with surrounding regions. The genetic differentiation between populations within the Himalayas seems to be much higher than between populations in the neighbouring countries. We also observe a remarkable genetic differentiation between the Tibeto-Burman speaking populations on the one hand and Indo-European speaking populations on the other, suggesting that language and geography have played an equally large role in defining the genetic composition of present-day populations within the Himalayas.
doi:10.1371/journal.pone.0091534
PMCID: PMC3948894  PMID: 24614536
2.  A systematic survey of loss-of-function variants in human protein-coding genes 
Science (New York, N.Y.)  2012;335(6070):823-828.
Genome sequencing studies indicate that all humans carry many genetic variants predicted to cause loss of function (LoF) of protein-coding genes, suggesting unexpected redundancy in the human genome. Here we apply stringent filters to 2,951 putative LoF variants obtained from 185 human genomes to determine their true prevalence and properties. We estimate that human genomes typically contain ~100 genuine LoF variants with ~20 genes completely inactivated. We identify rare and likely deleterious LoF alleles, including 26 known and 21 predicted severe disease-causing variants, as well as common LoF variants in non-essential genes. We describe functional and evolutionary differences between LoF-tolerant and recessive disease genes, and a method for using these differences to prioritize candidate genes found in clinical sequencing studies.
doi:10.1126/science.1215040
PMCID: PMC3299548  PMID: 22344438
3.  The Grandest Genetic Experiment Ever Performed on Man? – A Y-Chromosomal Perspective on Genetic Variation in India 
We have analysed Y-chromosomal data from Indian caste, Indian tribal and East Asian populations in order to investigate the impact of the caste system on male genetic variation. We find that variation within populations is lower in India than in East Asia, while variation between populations is overall higher. This observation can be explained by greater subdivision within the Indian population, leading to more genetic drift. However, the effect is most marked in the tribal populations, and the level of variation between caste populations is similar to the level between Chinese populations. The caste system has therefore had a detectable impact on Y-chromosomal variation, but this has been less strong than the influence of the tribal system, perhaps because of larger population sizes in the castes, more gene flow or a shorter period of time.
PMCID: PMC2987567  PMID: 21103011
Y chromosome; genetic variation; Indian caste system; endogamy; population substructure
4.  Genomic complexity of the Y-STR DYS19: inversions, deletions and founder lineages carrying duplications 
The Y-STR DYS19 is firmly established in the repertoire of Y-chromosomal markers used in forensic analysis yet is poorly understood at the molecular level, lying in a complex genomic environment and exhibiting null alleles, as well as duplications and occasional triplications in population samples. Here, we analyse three null alleles and 51 duplications and show that DYS19 can also be involved in inversion events, so that even its location within the short arm of the Y chromosome is uncertain. Deletion mapping in the three chromosomes carrying null alleles shows that their deletions are less than ~300 kb in size. Haplotypic analysis with binary markers shows that they belong to three different haplogroups and so represent independent events. In contrast, a collection of 51 DYS19 duplication chromosomes belong to only four haplogroups: two are singletons and may represent somatic mutation in lymphoblastoid cell lines, but two, in haplogroups G and C3c, represent founder lineages that have spread widely in Central Europe/West Asia and East Asia, respectively. Consideration of candidate mechanisms underlying both deletions and duplications provides no evidence for the involvement of non-allelic homologous recombination, and they are likely to represent sporadic events with low mutation rates. Understanding the basis and population distribution of these DYS19 alleles will aid in the utilisation and interpretation of profiles that contain them.
doi:10.1007/s00414-008-0253-3
PMCID: PMC2680205  PMID: 18553096
Y chromosome; Y-STR; DYS19; Duplication; Deletion; Inversion
5.  Dynamic Nature of the Proximal AZFc Region of the Human Y Chromosome: Multiple Independent Deletion and Duplication Events Revealed by Microsatellite Analysis 
Human mutation  2008;29(10):1171-1180.
The human Y chromosome shows frequent structural variants, some of which are selectively neutral, while others cause impaired fertility due to the loss of spermatogenic genes. The large-scale use of multiple Y-chromosomal microsatellites in forensic and population genetic studies can reveal such variants, through the absence or duplication of specific markers in haplotypes. We describe Y chromosomes in apparently normal males carrying null and duplicated alleles at the microsatellite DYS448, which lies in the proximal part of the azoospermia factor c (AZFc) region, important in spermatogenesis, and made up of “ampliconic” repeats that act as substrates for nonallelic homologous recombination (NAHR). Physical mapping in 26 DYS448 deletion chromosomes reveals that only three cases belong to a previously described class, representing independent occurrences of an~1.5-Mb deletion mediated by recombination between the b1 and b3 repeat units. The remainder belong to five novel classes; none appears to be mediated through homologous recombination, and all remove some genes, but are likely to be compatible with normal fertility. A combination of deletion analysis with binary-marker and microsatellite haplotyping shows that the 26 deletions represent nine independent events. Nine DYS448 duplication chromosomes can be explained by four independent events. Some lineages have risen to high frequency in particular populations, in particular a deletion within haplogroup (hg) C*(xC3a,C3c) found in 18 Asian males. The nonrandom phylogenetic distribution of duplication and deletion events suggests possible structural predisposition to such mutations in hgs C and G. Hum Mutat 29(10), 1171–1180, 2008.
doi:10.1002/humu.20757
PMCID: PMC2689608  PMID: 18470947
Y chromosome; AZFc; microsatellite; deletion; duplication
6.  Nepalese populations show no association between the distribution of malaria and protective alleles 
Malaria is perhaps the most important parasitic infection and strongest known force for selection in the recent evolutionary history of the human genome. Genetically-determined resistance to malaria has been well-documented in some populations, mainly from Africa. The disease is also endemic in South Asia, the world’s second most populous region, where resistance to malaria has also been observed, for example in Nepal. The biological basis of this resistance, however, remains unclear. We have therefore investigated whether known African resistance alleles also confer resistance in Asia. We typed seven single nucleotide polymorphisms (SNPs) from the genes HBB, FY, G6PD, TNFSF5, TNF, NOS2 and FCGR2A in 928 healthy individuals from Nepal. Five loci were found to be fixed for the non-resistant allele (HBB, FY, G6PD, TNFSF5 and NOS2). The remaining two (rs1800629 and rs1801274) showed the presence of the resistant allele at a frequency of 93% and 27% in TNF and FCGR2A, respectively. However, the frequencies of these alleles did not differ significantly between highland (susceptible) and lowland (resistant) populations. The observed differences in allele and genotype frequencies in Nepalese populations therefore seem to reflect demographic processes or other selective forces in the Himalayan region, rather than malaria selection pressure actin on these alleles.
PMCID: PMC2684443  PMID: 19461987
Malaria; Himalayas; Nepal; single nucleotide polymorphisms; selection; resistance
7.  A Shared Y-chromosomal Heritage between Muslims and Hindus in India 
Human genetics  2006;120(4):543-551.
Arab forces conquered the Indus Delta region in 711 A.D. and, although a Muslim state was established there, their influence was barely felt in the rest of South Asia at that time. By the end of the tenth century, Central Asian Muslims moved into India from the northwest and expanded throughout the subcontinent. Muslim communities are now the largest minority religion in India, comprising more than 138 million people in a predominantly Hindu population of over one billion. It is unclear whether the Muslim expansion in India was a purely cultural phenomenon or had a genetic impact on the local population. To address this question from a male perspective, we typed eight microsatellite loci and 16 binary markers from the Y chromosome in 246 Muslims from Andhra Pradesh, and compared them to published data on 4,204 males from China, Central Asia, other parts of India, Sri Lanka, Pakistan, Iran, the Middle East, Turkey, Egypt and Morocco. We find that the Muslim populations in general are genetically closer to their non-Muslim geographical neighbors than to other Muslims in India, and that there is a highly significant correlation between genetics and geography (but not religion). Our findings indicate that, despite the documented practice of marriage between Muslim men and Hindu women, Islamization in India did not involve large-scale replacement of Hindu Y chromosomes. The Muslim expansion in India was predominantly a cultural change and was not accompanied by significant gene flow, as seen in other places, such as China and Central Asia.
doi:10.1007/s00439-006-0234-x
PMCID: PMC2590854  PMID: 16951948
Y-chromosomal polymorphism; India; Muslim; Hindu
8.  Nepalese populations show no association between the distribution of malaria and protective alleles 
Malaria is perhaps the most important parasitic infection and strongest known force for selection in the recent evolutionary history of the human genome. Genetically-determined resistance to malaria has been well-documented in some populations, mainly from Africa. The disease is also endemic in South Asia, the world's second most populous region, where resistance to malaria has also been observed, for example in Nepal. The biological basis of this resistance, however, remains unclear. We have therefore investigated whether known African resistance alleles also confer resistance in Asia. We typed seven single nucleotide polymorphisms (SNPs) from the genes HBB, FY, G6PD, TNFSF5, TNF, NOS2 and FCGR2A in 928 healthy individuals from Nepal. Five loci were found to be fixed for the non-resistant allele (HBB, FY, G6PD, TNFSF5 and NOS2). The remaining two (rs1800629 and rs1801274) showed the presence of the resistant allele at a frequency of 93% and 27% in TNF and FCGR2A, respectively. However, the frequencies of these alleles did not differ significantly between highland (susceptible) and lowland (resistant) populations. The observed differences in allele and genotype frequencies in Nepalese populations therefore seem to reflect demographic processes or other selective forces in the Himalayan region, rather than malaria selection pressure acting on these alleles.
PMCID: PMC2684443  PMID: 19461987
Malaria; Himalayas; Nepal; single nucleotide polymorphisms; selection; resistance

Results 1-8 (8)