Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Evidence for Distinct Coastal and Offshore Communities of Bottlenose Dolphins in the North East Atlantic 
PLoS ONE  2015;10(4):e0122668.
Bottlenose dolphin stock structure in the northeast Atlantic remains poorly understood. However, fine scale photo-id data have shown that populations can comprise multiple overlapping social communities. These social communities form structural elements of bottlenose dolphin (Tursiops truncatus) populations, reflecting specific ecological and behavioural adaptations to local habitats. We investigated the social structure of bottlenose dolphins in the waters of northwest Ireland and present evidence for distinct inshore and offshore social communities. Individuals of the inshore community had a coastal distribution restricted to waters within 3 km from shore. These animals exhibited a cohesive, fission-fusion social organisation, with repeated resightings within the research area, within a larger coastal home range. The offshore community comprised one or more distinct groups, found significantly further offshore (>4 km) than the inshore animals. In addition, dorsal fin scarring patterns differed significantly between inshore and offshore communities with individuals of the offshore community having more distinctly marked dorsal fins. Specifically, almost half of the individuals in the offshore community (48%) had characteristic stereotyped damage to the tip of the dorsal fin, rarely recorded in the inshore community (7%). We propose that this characteristic is likely due to interactions with pelagic fisheries. Social segregation and scarring differences found here indicate that the distinct communities are likely to be spatially and behaviourally segregated. Together with recent genetic evidence of distinct offshore and coastal population structures, this provides evidence for bottlenose dolphin inshore/offshore community differentiation in the northeast Atlantic. We recommend that social communities should be considered as fundamental units for the management and conservation of bottlenose dolphins and their habitat specialisations.
PMCID: PMC4390239  PMID: 25853823
2.  Characteristics of Fishing Operations, Environment and Life History Contributing to Small Cetacean Bycatch in the Northeast Atlantic 
PLoS ONE  2014;9(8):e104468.
Fisheries bycatch is a key threat to cetacean species globally. Managing the impact requires an understanding of the conditions under which animals are caught and the sections of the population affected. We used observer data collected on an albacore tuna gillnet fishery in the northeast Atlantic, to assess operational and environmental factors contributing to bycatch of common and striped dolphins, using generalised linear models and model averaging. Life history demographics of the captured animals were also investigated. In both species, young males dominated the catch. The age ratio of common dolphins was significantly different from that estimated for the population in the region, based on life tables (G = 17.1, d.f. = 2, p = 0.002). Skewed age and sex ratios may reflect varying vulnerability to capture, through differences in behaviour or segregation in populations. Adult females constituted the second largest portion of the bycatch for both species, with potential consequences for population sustainability. Depth was the most important parameter influencing bycatch of both species and reflected what is known about common and striped dolphin habitat use in the region as the probability of catching common dolphins decreased, and striped dolphins increased, with increasing depth. Striped dolphin capture was similarly influenced by the extent to which operations were conducted in daylight, with the probability of capture increasing with increased operations in the pre-sunset and post-sunrise period, potentially driven by increased ability of observers to record animals during daylight operations, or by diurnal movements increasing contact with the fishery. Effort, based on net length and soak time, had little influence on the probability of capturing either species. Our results illustrate the importance of assessing the demographic of the animals captured during observer programmes and, perhaps more importantly, suggest that effort restrictions alone may not be sufficient to eradicate bycatch in areas where driftnets and small cetaceans co-occur.
PMCID: PMC4133181  PMID: 25121802
3.  Genetic and historic evidence for climate-driven population fragmentation in a top cetacean predator: the harbour porpoises in European water 
Recent climate change has triggered profound reorganization in northeast Atlantic ecosystems, with substantial impact on the distribution of marine assemblages from plankton to fishes. However, assessing the repercussions on apex marine predators remains a challenging issue, especially for pelagic species. In this study, we use Bayesian coalescent modelling of microsatellite variation to track the population demographic history of one of the smallest temperate cetaceans, the harbour porpoise (Phocoena phocoena) in European waters. Combining genetic inferences with palaeo-oceanographic and historical records provides strong evidence that populations of harbour porpoises have responded markedly to the recent climate-driven reorganization in the eastern North Atlantic food web. This response includes the isolation of porpoises in Iberian waters from those further north only approximately 300 years ago with a predominant northward migration, contemporaneous with the warming trend underway since the ‘Little Ice Age’ period and with the ongoing retreat of cold-water fishes from the Bay of Biscay. The extinction or exodus of harbour porpoises from the Mediterranean Sea (leaving an isolated relict population in the Black Sea) has lacked a coherent explanation. The present results suggest that the fragmentation of harbour distribution range in the Mediterranean Sea was triggered during the warm ‘Mid-Holocene Optimum’ period (approx. 5000 years ago), by the end of the post-glacial nutrient-rich ‘Sapropel’ conditions that prevailed before that time.
PMCID: PMC2981983  PMID: 20444724
cetacean; climate change; habitat fragmentation; population genetics; coalescence
4.  Rise of oceanographic barriers in continuous populations of a cetacean: the genetic structure of harbour porpoises in Old World waters 
BMC Biology  2007;5:30.
Understanding the role of seascape in shaping genetic and demographic population structure is highly challenging for marine pelagic species such as cetaceans for which there is generally little evidence of what could effectively restrict their dispersal. In the present work, we applied a combination of recent individual-based landscape genetic approaches to investigate the population genetic structure of a highly mobile extensive range cetacean, the harbour porpoise in the eastern North Atlantic, with regards to oceanographic characteristics that could constrain its dispersal.
Analyses of 10 microsatellite loci for 752 individuals revealed that most of the sampled range in the eastern North Atlantic behaves as a 'continuous' population that widely extends over thousands of kilometres with significant isolation by distance (IBD). However, strong barriers to gene flow were detected in the south-eastern part of the range. These barriers coincided with profound changes in environmental characteristics and isolated, on a relatively small scale, porpoises from Iberian waters and on a larger scale porpoises from the Black Sea.
The presence of these barriers to gene flow that coincide with profound changes in oceanographic features, together with the spatial variation in IBD strength, provide for the first time strong evidence that physical processes have a major impact on the demographic and genetic structure of a cetacean. This genetic pattern further suggests habitat-related fragmentation of the porpoise range that is likely to intensify with predicted surface ocean warming.
PMCID: PMC1971045  PMID: 17651495

Results 1-4 (4)