Search tips
Search criteria

Results 1-3 (3)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  RGD Surface Functionalization of the Hydrophilic Acrylic Intraocular Lens Material to Control Posterior Capsular Opacification 
PLoS ONE  2014;9(12):e114973.
Posterior Capsular Opacification (PCO) is the capsule fibrosis developed on implanted IntraOcular Lens (IOL) by the de-differentiation of Lens Epithelial Cells (LECs) undergoing Epithelial Mesenchymal Transition (EMT). Literature has shown that the incidence of PCO is multifactorial including the patient's age or disease, surgical technique, and IOL design and material. Reports comparing hydrophilic and hydrophobic acrylic IOLs have shown that the former has more severe PCO. On the other hand, we have previously demonstrated that the adhesion of LECs is favored on hydrophobic compared to hydrophilic materials. By combining these two facts and contemporary knowledge in PCO development via the EMT pathway, we propose a biomimetically inspired strategy to promote LEC adhesion without de-differentiation to reduce the risk of PCO development. By surface grafting of a cell adhesion molecule (RGD peptide) onto the conventional hydrophilic acrylic IOL material, the surface-functionalized IOL can be used to reconstitute a capsule-LEC-IOL sandwich structure, which has been considered to prevent PCO formation in literature. Our results show that the innovative biomaterial improves LEC adhesion, while also exhibiting similar optical (light transmittance, optical bench) and mechanical (haptic compression force, IOL injection force) properties compared to the starting material. In addition, compared to the hydrophobic IOL material, our bioactive biomaterial exhibits similar abilities in LEC adhesion, morphology maintenance, and EMT biomarker expression, which is the crucial pathway to induce PCO. The in vitro assays suggest that this biomaterial has the potential to reduce the risk factor of PCO development.
PMCID: PMC4263720  PMID: 25501012
2.  Mercury immune toxicity in harbour seals: links to in vitro toxicity 
Environmental Health  2008;7:52.
Mercury is known to bioaccumulate and to magnify in marine mammals, which is a cause of great concern in terms of their general health. In particular, the immune system is known to be susceptible to long-term mercury exposure. The aims of the present study were (1) to determine the mercury level in the blood of free-ranging harbour seals from the North Sea and (2) to examine the link between methylmercury in vitro exposure and immune functions using seal and human mitogen-stimulated peripheral blood mononuclear cells (T-lymphocytes).
Total mercury was analysed in the blood of 22 harbour seals. Peripheral blood mononuclear cells were isolated from seals (n = 11) and from humans (n = 9). Stimulated lymphocytes of both species were exposed to functional tests (proliferation, metabolic activity, radioactive precursor incorporation) under increasing doses of methylmercury (0.1 to 10 μM). The expression of cytokines (IL-2, IL-4 and TGF-β) was investigated in seal lymphocytes by RT-PCR and by real time quantitative PCR (n = 5) at methylmercury concentrations of 0.2 and 1 μM. Finally, proteomics analysis was attempted on human lymphocytes (cytoplasmic fraction) in order to identify biochemical pathways of toxicity at concentration of 1 μM (n = 3).
The results showed that the number of seal lymphocytes, viability, metabolic activity, DNA and RNA synthesis were reduced in vitro, suggesting deleterious effects of methylmercury concentrations naturally encountered in free-ranging seals. Similar results were found for human lymphocytes. Functional tests showed that a 1 μM concentration was the critical concentration above which lymphocyte activity, proliferation and survival were compromised. The expression of IL-2 and TGF-β mRNA was weaker in exposed seal lymphocytes compared to control cells (0.2 and 1 μM). Proteomics showed some variation in the protein expression profile (e.g. vimentin).
Our results suggest that seal and human PBMCs react in a comparable way to MeHg in vitro exposure with, however, larger inter-individual variations. MeHg could be an additional cofactor in the immunosuppressive pollutant cocktail generally described in the blood of seals and this therefore raises the possibility of additional additive effects in the marine mammal immune system.
PMCID: PMC2600635  PMID: 18959786
3.  Proteome alteration induced by hTERT transfection of human fibroblast cells 
Proteome Science  2008;6:12.
Telomerase confers cellular immortality by elongating telomeres, thereby circumventing the Hayflick limit. Extended-life-span cells have been generated by transfection with the human telomerase reverse transcriptase (hTERT) gene. hTERT transfected cell lines may be of outstanding interest to monitor the effect of drugs targeting the telomerase activity. The incidence of hTERT gene transfection at the proteome level is a prerequisite to that purpose. The effect of the transfection has been studied on the proteome of human fibroblast (WI38). Cytosolic and nuclear fractions of WI38 cells, empty vector transfected WI38 (WI38-HPV) and hTERT WI38 cells were submitted to a 2D-DIGE (Two-Dimensional Differential In-Gel Electrophoresis) analysis. Only spots that had a similar abundance in WI38 and WI38-HPV, but were differentially expressed in WI38 hTERT were selected for MS identification. This method directly points to the proteins linked with the hTERT expression. Number of false positive differentially expressed proteins has been excluded by using control WI38-HPV cells. The proteome alteration induced by hTERT WI38 transfection should be taken into account in subsequent use of the cell line for anti-telomerase drugs evaluation.
2D-DIGE experiment shows that 57 spots out of 2246 are significantly differentially expressed in the cytosolic fraction due to hTERT transfection, and 38 were confidently identified. In the nuclear fraction, 44 spots out of 2172 were selected in the differential proteome analysis, and 14 were identified. The results show that, in addition to elongating telomeres, hTERT gene transfection has other physiological roles, among which an enhanced ER capacity and a potent cell protection against apoptosis.
We show that the methodology reduces the complexity of the proteome analysis and highlights proteins implicated in other processes than telomere elongation. hTERT induced proteome changes suggest that telomerase expression enhances natural cell repair mechanisms and stress resistance probably required for long term resistance of immortalized cells. Thus, hTERT transfected cells can not be only consider as an immortal equivalent to parental cells but also as cells which are over-resistant to stresses. These findings are the prerequisite for any larger proteomics aiming to evaluate anti-telomerase drugs proteome alteration and thus therapeutics induced cell reactions.
PMCID: PMC2386453  PMID: 18419814

Results 1-3 (3)